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Problem 1. Prove that if n is a nonnegative integer, then 19 · 8n + 17 is not a
prime number.

Solution. First, we take the equation mod 3. Notice that

19 · 8n + 17 ≡ (−1)n − 1 (mod 3),

so 19 · 8n + 17 is divisible by 3 when n is even. Next, we take the equation mod 5.
Since

19 · 8n + 17 ≡ −3n + 2 (mod 5),

and 34 ≡ 1 (mod 5), we can see that the expression is periodic mod 4. Noting that
−33 + 2 = −25 ≡ 0 (mod 5), we have that 19 · 8n + 17 ≡ 0 (mod 5) when n ≡ 3
(mod 4). Finally, we take the equation mod 13. Since

19 · 8n + 17 ≡ 6 · 8n + 4 (mod 13)

and 84 ≡ 1 (mod 13), we can see that the expression is periodic mod 4. Noting
that 6 · 81 + 4 = 52 ≡ 0 (mod 13), we have that 19 · 8n + 17 ≡ 0 (mod 13) when
n ≡ 1 (mod 4).

Since 19 · 8n + 17 is always divisible by 3, 5, or 13 (and is never equal to any of
these, which we can show by noting that it is increasing), it can never be prime
when n is a nonnegative integer.
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Problem 2. Find all positive integers n ≥ 2 for which one can fill in the cells
of an n× n grid with the numbers 0, 1, 2 such that, when calculating the sum of
the numbers in each row and each column, the numbers 1, 2 . . . , 2n are obtained in
some order.

Answer. Any even n

Solution. First, we claim that n cannot be odd. Let ri denote the sum of all the
numbers in the cells of the ith row, and ci denote the sum of all the numbers in
the cells of the ith column. Then

n∑
i=1

ri =
n∑

i=1

ci,

since they are both equal to the sum of all the numbers in the grid. Thus,

n∑
i=1

ri +
n∑

i=1

ci = 1 + 2 + · · ·+ 2n = n(2n+ 1)

must be even, which is impossible for odd n.

Next, we will show that any even n works. Let aij denote the entry in the
ith row from the bottom and jth column from the left. We claim that the following
construction satisfies the desired property:

• If i > j, aij = 0.

• If i < j, aij = 2.

• If i = j ≤ n
2
, aij = 1.

• If i = j > n
2
, aij = 2.

For example, the following is the construction for n = 8.

0 0 0 0 0 0 0 2
0 0 0 0 0 0 2 2
0 0 0 0 0 2 2 2
0 0 0 0 2 2 2 2
0 0 0 1 2 2 2 2
0 0 1 2 2 2 2 2
0 1 2 2 2 2 2 2
1 2 2 2 2 2 2 2

To show this works, net n = 2k, and want to show that in the sums of all the rows
and columns, the numbers 1, 2, . . . , 4k appear in some order. We inspect four cases:

1. Rows r1 through rk:
Let i be the index of the row. Then there must be 2k − i cells in the row
filled with 2, 1 cell filled with 1, and i− 1 cells filled with 0. Thus, these row
sums can be represented by the set

{2(2k − i) + 1 | 1 ≤ i ≤ k},

or {2k + 1, 2k + 3, . . . , 4k − 1}.
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2. Rows rk+1 through r2k:
Let i be the index of the row. Then there must be 2k − i + 1 cells in the
row filled with 2 and i− 1 cells filled with 0. Thus, these row sums can be
represented by the set

{2(2k − i+ 1) | k + 1 ≤ i ≤ 2k},

or {2, 4, . . . , 2k}.

3. Columns c1 through ck:
Let i be the index of the row. Then there must be 2k − i cells in the row
filled with 0, 1 cell filled with 1, and i − 1 cells filled with 2. Thus, these
column sums can be represented by the set

{2i− 1 | 1 ≤ i ≤ k},

or {1, 3, . . . , 2k − 1}.

4. Columns ck+1 through c2k:
Let i be the index of the row. Then there must be 2k− i cells in the row filled
with 0 and i cells filled with 2. Thus, these column sums can be represented
by the set

{2i | k + 1 ≤ i ≤ 2k},

or {2k + 2, 2k + 4, . . . , 4k}.

Taking the union of all these sets gives us all the numbers from 1 to 4k, inclusive,
as desired.
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Problem 3. Let ABCD be a cyclic quadrilateral such that no two sides are
parallel to each other. Let lines AB and CD intersect at E, and let lines AD
and BC intersect at F . Prove that the angle bisectors of ∠AFB and ∠BEC are
perpendicular to each other.

Solution. Let P be the intersection of the angle bisectors of ∠AFB and ∠BEC.
We wish to show that ∠FPE = 90◦.

We do this by inspecting the angle measures of AFPE. Notice that

∠FAE = 180◦ + FAB = 180◦ + ∠BCD.

Next, we find the angle measures of ∠AFP and ∠PEA. We see that

∠PEA =
1

2
∠CEB =

1

2
(180◦ − ∠BCD − ∠ABC)

and

∠AFP =
1

2
∠DFC =

1

2
(180◦ − ∠ADC − ∠BCD) =

1

2
(∠ABC − ∠BCD) .

Thus,

∠FPE = 360◦ − ∠FAE − ∠PEA− ∠AFP

= 360◦ − (180◦ + ∠BCD)− 1

2
(180◦ − ∠BCD − ∠ABC)− 1

2
(∠ABC − ∠BCD)

= 90◦ − ∠BCD +
1

2
∠BCD +

1

2
∠ABC − 1

2
∠ABC +

1

2
∠BCD

= 90◦,

so ∠FPE = 90◦, as desired.
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Problem 4. Does there exist a sequence of 2025 consecutive positive integers
such that the kth term is divisible by 2026− k for all 1 ≤ k ≤ 2025?

Answer. Yes

Solution. Let n be the smallest of the 2025 consecutive positive integers. Then, we
want the following congruence to hold for all integers 0 ≤ k ≤ 2024:

n+ k ≡ 0 (mod (2025− k))

n ≡ −k (mod (2025− k))

n ≡ −2025 (mod (2025− k))

where the third congruence is achieved by subtracting (2025− k) from the second
congruence. Then, n = −2025 + lcm(1, 2, 3, . . . , 2025) is a solution.

Remark. More generally, the existence criteria for a solution to a system of modular
congruences whose moduli are not pairwise coprime requires that, for each pair of
congruences n ≡ ri (mod mi) and n ≡ rj (mod mj), the following holds:

ri ≡ rj (mod gcd(mi,mj)).

A proof of this result is left at the end of this remark. Applying this to the problem
at hand, it suffices to show that −i ≡ −j (mod gcd(2025− i, 2025− j)). This is
clear, since, by the Euclidean Algorithm,

gcd(2025− i, 2025− j) | (2025− i)− (2025− j) = j − i

and −i ≡ −j (mod (j − i)) is true.

Proof of existence criteria. It suffices to show the result for two congruences, as
the general criteria arises from induction on the number of congruences. We would
like to show that, for the following system of two congruences:

n ≡ r1 (mod m1)

n ≡ r2 (mod m2)

a solution for n (mod lcm(m1,m2)) exists ⇔ r1 ≡ r2 (mod gcd(m1,m2)).

Let g = gcd(m1,m2). We first prove the forward direction. If a solution for
n (mod lcm(m1,m2)) exists, let it be s. Then, s ≡ r1 (mod m1) and s ≡ r2
(mod m2). By the definition of gcd, g | m1,m2, so it is also true that s ≡ r1
(mod g) and s ≡ r2 (mod g). By transitivity, it is clear that r1 ≡ r2 (mod g).

To prove the reverse direction, we first split each congruence into its own system
of congruences based on the prime factorization of its modulus. That is, if m1 =∏k

i=1 p
ei
i for distinct primes pi and integer exponents ei, then we instead consider

n ≡ r1 (mod peii ) for all 1 ≤ i ≤ k. By the Chinese Remainder Theorem on
pairwise coprime moduli, the original congruence and this resulting system are
equivalent. We do the same with m2 =

∏l
j=1 q

fj
j for distinct primes qj and integer

exponents fj.

The reverse direction should now be clear; if r1 ≡ r2 (mod gcd(m1,m2)), then all
congruences, specifically the ones where pi = qj for some i and some j, are consistent.
After discarding redundant congruences, the Chinese Remainder Theorem may be
applied on the resulting system, as all moduli are pairwise coprime.
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Problem 5. Let P (x) be a polynomial with degree at most 8 such that for
k = 0, 1, . . . , 8,

P (k) =


0 k ≡ 0 (mod 3)

1 k ≡ 1 (mod 3)

2 k ≡ 2 (mod 3).

Find P (9).

Answer. −81

Solution. Consider the polynomial Q(x) = P (x)− x. For k = 0, 1, . . . , 8,

Q(k) =


0 0 ≤ k ≤ 2

−3 3 ≤ k ≤ 5

−6 6 ≤ k ≤ 8.

Since deg(P ) ≤ 8, deg(Q) ≤ 8. Using finite differences, the 9th order finite
difference

∆9
1[Q](0) =

Ç
9

9

å
Q(9)−

Ç
9

8

å
Q(8) + · · ·+ (−1)9

Ç
9

0

å
Q(0) = 0

since deg(Q) ≤ 8. Rearranging to solve for Q(9), we get

Q(9) =

Ç
9

8

å
Q(8)−

Ç
9

7

å
Q(7) + · · ·+ (−1)8

Ç
9

0

å
Q(0).

Now substituting the values of Q(k) for k = 0, 1, . . . , 8,

Q(9) = −6 ·
ÇÇ

9

8

å
−
Ç
9

7

å
+

Ç
9

6

åå
+ 3 ·

ÇÇ
9

5

å
−
Ç
9

4

å
+

Ç
9

3

åå
.

Since
(
9
4

)
=

(
9
5

)
, we can rewrite the above expression and solve:

Q(9) = −6 ·
ÇÇ

9

8

å
−
Ç
9

7

å
+

Ç
9

6

åå
+ 3 ·

Ç
9

3

å
Q(9) = −6 · (9− 36 + 84) + 3 · 84 = −90.

Then, to find P (9), Q(x) = P (x)− x so P (9) = Q(9) + 9 = −90 + 9 = −81 .
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