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Problem 1. Let a1, b1, c1 be positive integers such that a21 + b21 = c21, and let
a2, b2, c2 be positive integers such that a22 + b22 = c22. Characterize all cases where
(a1 + a2)

2 + (b1 + b2)
2 = (c1 + c2)

2.

Answer. (a2, b2) is a scalar multiple of (a1, b1)

Solution. Consider a triangle in the plane that has vertices (0, 0), (a1, b1), and
(a1 + a2, b1 + b2). Its side lengths are

√
a21 + b21 = c1,

√
a22 + b22 = c2, and»

(a1 + a2)2 + (b1 + b2)2 = c1 + c2.

By the Triangle Inequality, this is only possible when the triangle is degenerate
and the vertices are collinear. Thus, it must be the case that

a1
a2

=
b1
b2
,

so (a2, b2) is a (not necessarily integer) scalar multiple of (a1, b1).
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Problem 2. Two acute angles a and b satisfy sin2(a)+sin2(b) = sin(a+ b). Prove
that a+ b = π

2
.

Solution. Let c = π
2
− b. We want to show that a = c, given

sin2(a) + sin2(b) = sin(a) cos(b) + cos(a) sin(b),

or equivalently,

sin2(a) + cos2(c) = sin(a) sin(c) + cos(a) cos(c).

Rearranging, we get

sin2(a)− sin(a) sin(c) = cos(a) cos(c)− cos2(c),

and factoring both sides, this simplifies to

sin(a) · (sin(a)− sin(c)) = cos(c) · (cos(a)− cos(c)).

Since a and b are acute, we know that a, b ∈ [0, π
2
]. Thus, sin(a) and cos(c) are both

positive. Furthermore, notice that for x ∈ [0, π
2
], sinx is strictly increasing and

cosx is strictly decreasing. Thus, if a ̸= c, then sin(a)− sin(c) and cos(a)− cos(c)
must be opposite signs, so there are no solutions when a ̸= c.

When a = c, we get sin2(a) + cos2(a) = sin(a) sin(a) + cos(c) cos(c), which is
clearly true.
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Problem 3. Prove that for arbitrary reals x1, x2, . . . , xn ∈ [0, 1], we have that
(x1 + x2 + · · ·+ xn + 1)2 ≥ 4(x2

1 + x2
2 + · · ·+ x2

n).

Solution. We prove the result through induction on n.
Base Case: n = 1
We want to show that for x1 ∈ [0, 1],

(x1 + 1)2 ≥ 4x2
1.

Notice that for x1 ∈ [0, 1],

(3x1 + 1)(x1 − 1) ≤ 0.

Expanding this and adding x2
1 on both sides, we get

4x2
1 − 2x1 − 1 ≤ x2

1.

Adding 2x1 + 1 to both sides produces the desired inequality. The base case thus
holds.

Inductive Hypothesis: We assume the claim is true for n = k, where k is a positive
integer. That is, we assume that given x1, x2, . . . , xk ∈ [0, 1], we have that

(x1 + x2 + · · ·+ xk + 1)2 ≥ 4(x2
1 + x2

2 + · · ·+ x2
k).

Inductive Step: We want to show that the claim is true for n = k + 1. In other
words, we want to show that given x1, x2, . . . , xk+1 ∈ [0, 1], we have that

(x1 + x2 + · · ·+ xk+1 + 1)2 ≥ 4(x2
1 + x2

2 + · · ·+ x2
k+1).

WLOG let x1 ≥ x2 ≥ · · · ≥ xk+1. We claim that

x1 + · · ·+ xk + 1 ≥ 3

2
xk+1.

If xk+1 ≤ 2
3
, then 3

2
xk+1 ≤ 1. Since all xi ∈ [0, 1],

x1 + · · ·+ xk + 1 ≥ 1 ≥ 3

2
xk+1,

as desired. If xk+1 > 2
3
, then because x1 ≥ x2 ≥ · · · ≥ xk+1 and k is a positive

integer (so k ≥ 1), we have that

x1 + · · ·+ xk + 1 >
2

3
+ 1 >

3

2
≥ 3

2
xk+1,

since we’re given that xk+1 ∈ [0, 1]. This proves the claim. We can take this claim
and multiply both sides by 2xk+1 and then add x2

k+1 on both sides, producing the
following inequality:

2xk+1(x1 + · · ·+ xk + 1) + x2
k+1 ≥ 4x2

k+1.

By the inductive hypothesis,

(x1 + · · ·+ xk + 1)2 ≥ 4(x2
1 + · · ·+ x2

k).

Adding the two inequalities, we get that

(x1 + · · ·+ xk + 1)2 + 2xk+1(x1 + · · ·+ xk + 1) + x2
k+1 ≥ 4(x2

1 + · · ·+ x2
k) + 4x2

k+1,

so
((x1 + · · ·+ xk + 1) + xk+1)

2 ≥ 4(x2
1 + · · ·+ x2

k + x2
k+1),

as desired. This completes the proof by induction on n.
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Problem 4. Let ABC be a triangle with perimeter 1. The A-excircle touches
AB and AC at P and Q. The line passing through the midpoints of AB and AC
meets the circumcircle of APQ at two points X and Y . Find the length of XY .

Answer. 1/2

Solution 1. Let IA be the A-excenter of △ABC. Then since the excircle is tangent

to lines
←→
AB and

←→
AC, we have that

∠APIA = ∠AQIA = 90◦,

so IA lies on the same circle as A,P,Q,X, Y. Let D be the point where the A-
excircle of △ABC touches BC.

Lemma. Lines
←→
QD and

←−→
IAB intersect on (APQ).

Let lines
←→
QD and

←−→
IAB intersect at X ′. Note that

∠QX ′IA = ∠DX ′B = 180◦ − ∠X ′BD − ∠X ′DB = ∠CBIA − ∠CDQ.

Because BIA bisects ∠CBP, we have that

∠CBIA =
1

2
(180◦ − ∠B) =

1

2
(∠A+ ∠C),

and by the Two Tangent Theorem, CD = CQ, so

∠CDQ =
1

2
(180◦ − ∠DCQ) =

1

2
∠C.

Thus,

∠QX ′IA =
1

2
(∠A+ ∠C)− 1

2
∠C =

1

2
∠A = ∠QAIA,

since AIA is a bisector of ∠A. This implies the desired result.

Lemma. Let lines
←−→
AX ′ and

←→
BC intersect at E. Then X ′ is the midpoint of
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AE.
First, notice that since X ′ lies on (APQ),

∠AX ′B = ∠AX ′IA = 90◦.

Furthermore, we know that BX ′ bisects ∠ABE, since X ′, B, and IA are collinear.
Thus, △ABE must be isosceles with AB = BE, implying the result.

We can similarly let Y ′ be the intersection of
←→
PD and

←→
IAC, and let F be the

intersection of
←→
BC and

←→
AY ′. By symmetry, Y ′ also lies on (APQ) and is the

midpoint of AF. Then
←−→
X ′Y ′ must be a midline of △AEF , so it must be a midline

of △ABC as well. Since we also know that X ′ and Y ′ line on (APQ), this implies
that X = X ′ and Y = Y ′.

Now notice that since BDIAP is a cyclic quadrilateral,

∠XY P = ∠XIAP = ∠BIAP = ∠BDP = ∠BPD = ∠APY,

implying that AXPY is an isosceles trapezoid. Thus, XY = AP. Now notice that
AP = AQ by the Two Tangent Theorem, and that

AP + AQ = AB +BP + AC + CQ = AB +BD + AC + CD = 1,

since the perimeter of △ABC is 1. Thus,

XY = AP =
1

2
,

as desired.

Solution 2. (Power of a Point Bash) Let a = BC, b = AC, and c = AB. Further-

more, let M and N be the midpoints of AB and AC, respectively. Then AM = c
2
,

AN = b
2
, and MN = a

2
. As shown at the end of the first solution, AP = AQ and

both have length equal to half the perimeter of △ABC. Thus,

MP =
a+ b

2
and NQ =

a+ c

2
.
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Now let x = XM and y = Y N. Using Power of a Point, we know that

XM ·MY = AM ·MP and Y N ·NX = AN ·NQ,

so we can set up the following system of equations:®
x
(
a
2
+ y

)
= c

2

(
a+b
2

)
y
(
a
2
+ x

)
= b

2

(
a+c
2

)
.

Expanding both equations, we obtain the following system:®
xy + xa

2
= ca+cb

4

xy + ya
2
= ab+cb

4
.

Subtracting these two equations, we get that

xa− ya

2
=

ca− ab

4
,

so
a

2
(x− y) =

a

2

Å
c

2
− b

2

ã
.

Since we know a is nonzero, we can divide both sides by a
2
to obtain the equation

x− y =
c

2
− b

2
.

We can substitute x = c
2
− b

2
+ y into the second equation in the original system to

get

y

Å
a

2
+

c

2
− b

2
+ y

ã
=

b

2

(a+ c

2

)
.

Expanding and moving all the terms to one side, we get the equation

y2 +

Å
a

2
+

c

2
− b

2

ã
y − b

2

(a+ c

2

)
= 0.

Notice that this factors intoÅ
y − b

2

ã(
y +

a

2
+

c

2

)
= 0.

Thus, either y = b
2
or y = −a

2
− c

2
, but the latter is not possible because a, c, and

y are all positive. So y = b
2
, and since x− y = c

2
− b

2
, we find that x = c

2
. Thus,

XY = x+
a

2
+ y =

a+ b+ c

2
=

1

2
,

as desired.
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Problem 5. Find all non-negative integer solutions (w, x, y, z) with w ≤ x ≤ y ≤
z which satisfy w2 + x2 + y2 + z2 = 22004.

Answer. (21001, 21001, 21001, 21001) and (0, 0, 0, 21002)

Solution. Note that the only possible squares mod 8 are 0, 1, and 4, where 1 is
achieved by any odd square, and 0 and 4 are achieved by even squares. Since

w2 + x2 + y2 + z2 ≡ 0 (mod 8),

which is impossible if any of the squares are 1 (mod 8), it must be the case that
w2, x2, y2, and z2 are all even squares, and thus divisible by 4. We can then let
w = 2w1, x = 2x1, y = 2y1, and z = 2z1, so

w2
1 + x2

1 + y21 + z21 = 22002.

Since 22002 is still divisible by 8, we see that w1, x1, y1, and z1 are also all even,
and letting w1 = 2w2, x1 = 2x2, y1 = 2y2, and z1 = 2z2 gives

w2
2 + x2

2 + y22 + z22 = 22000.

We may descend until

w2
1001 + x2

1001 + y21001 + z21001 = 22 = 4,

by which point it is clear that the only solutions are w1001 = x1001 = y1001 =
z1001 = 1 and w1001 = x1001 = y1001 = 0, z1001 = 2. Working backwards, since
w = w1001 ·21001 (and symmetrically for the other three variables), our two solutions

are (21001, 21001, 21001, 21001) and (0, 0, 0, 21002) as desired.
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Problem 6. Alice and Bob play a game of popping bubble wraps. There is a
square sheet of 6 by 6 bubbles, and each person takes turns popping however many
bubbles they want in one specific row only, with Alice going first. Whichever player
pops the last bubble loses. Who wins with optimal play?

Answer. Bob

Solution. Due to the symmetric nature of the rows, Bob employs a copycat strategy
with some nuances:

1. For any number of bubbles Alice removes on her turn in one row, Bob removes
the same number of bubbles from a different row. These two rows are forever
linked in symmetry, where if Alice removes bubbles from one row, Bob will
remove the same number from the other. Hence, the number of bubbles in
each pair of rows stays the same.

2. Bob will lose if he continues employing this copycat strategy until the very
end, as he is bound to take the last bubble. However, Bob can change the
outcome of the game towards the very end, when every row has one or no
bubbles left and the parity is set. As the strategy in (1) is played out, the
number of bubbles must invariably go down, until there exists only one row
that contains more than one bubble. This is guaranteed by the strategy in
(1), since the parity of rows with a bubble count greater than 1 is always even
during Alice’s turn. Assessing the remaining bubbles left, Bob can remove all
the bubbles in the last row or all but one, fixing the outcome of the remainder
of the game by parity.

As an example, consider the following game. Let the ordered 6-tuple (a1, a2, a3, · · · , a6)
denote the number of bubbles left in rows 1, 2, 3, · · · , 6, respectively.

Alice’s Move Bob’s Move
(0, 6, 6, 6, 6, 6) (0, 0, 6, 6, 6, 6)
(0, 0, 6, 2, 6, 6) (0, 0, 2, 2, 6, 6)
(0, 0, 2, 2, 3, 6) (0, 0, 2, 2, 3, 3)
(0, 0, 2, 2, 1, 3) (0, 0, 2, 2, 1, 1)
(0, 0, 0, 2, 1, 1) (0, 0, 0, 1, 1, 1)
(0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 1)

Table 1: Bob Wins
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