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Problem 1. Consider complex polynomials P(z) = 2" + a;z" ' + -+ + a,
with the zeroes xy, x5, -+ , 2, and Q(x) = 2" + byz" ! + - -+ + b, with the zeroes
x? a3 - ,z2. Prove that if ay + a3 +as +--- and as + as + ag + - - - are real
numbers, then b; + by + b3 + - - - + b, is also real.

Solution. Let A=ay +asz+as+--- and B=ay+ a4 + ag + ---. Since
br+by+bs+ -+, =Q(1) -1,

it is sufficient to show that @)(1) is real. Note that

Q(1) = H(l — x7)

(1 —z)(1+x;)

—.

.
Il
—

= (—=1)" H(l — ;) (=1 — ;)
= (-1)"P(1)P(-1).
We know that

Pl)y=14a+as+az+...
=1+A+ B,

and

(=1)"P(=1) = (=)™ (=" + (=1)"lar + (=1)"2ag + (=1)"Pag + - --)
=1l—a;+ay—as+...

=1—-A+B.
Thus,
Q) = (-1)"P(1)P(-1)=(-1)"(1+ A+ B)(1 - A+ B).
Since A and B are real, (1) is real, as desired. O



Problem 2. Ashley and Sophia are playing a game. They take turns flipping
a coin, with Ashley going first, and keep track of the total number of heads they
have flipped. Whoever reaches 2 heads flipped first wins. What is the probability
that Sophia wins? (Note: The two heads need not be consecutive.)

11
27
Solution. Let p be the probability that Sophia wins. Then notice that if Ashley’s

first flip is tails, Sophia has a 1 — p probability of winning, since it is equivalent to
playing the same game with the roles reversed. Thus, we can write the equation

Answer.

1 1
p=3 (1—-p)+ 3 P(Sophia wins | Ashley’s first flip is heads).
To find the probability that Sophia wins given that Ashley’s first flip is heads,
we find the probability this happens in n moves and add them up for all possible
values of n. (Note that n > 2, since it’s impossible to win in less than 2 moves.)

Ashley’s first coin flip is given to be a head, and the next n — 1 coin flips must
1

be tails so that she does not win. There is a 57— probability that this sequence
occurs.

On the other hand, Sophia’s nth coin flip must be a head (since she wins on the
nth move), and exactly one of her first n — 1 coin flips is a head; the rest are tails.

Then there is a "2;1 probability that this sequence occurs.

Thus, the probability Sophia wins on the nth move given that Ashley’s first

flip is heads is
n—1
22n—1 )

so the probability that Sophia wins given that Ashley’s first flip is heads is

922n—1 - 2 4n‘
n>1

n>2
We then use the identity

1

m:Z<n+1)$n:1+2x+31’2+4$3+...

n>0

(when |z| < 1 and the sequence converges), which either be proved by squaring the
geometric series expansion of ﬁ and using stars and bars, or by differentiating
that expression. We get

Thus, we have that

and we can solve to get |p = o7 | O




Problem 3. Let N be the number of ordered triples of positive integers (a, b, c)
are such that lem(a, b, c¢) = 20! and ged(a, b, ¢) = 1. Find the number of divisors of
N.

Answer.

Solution. Let a = 2% - 3% . 5% . 7% . 11% . 13% . 177 . 19?8, and denote b and ¢
similarly. Note that for 1 <i < 8, we have

min(a;, b;, ¢;) = 0 and max(a;, b;, ¢;) = n,

for some n. We now want to find f(n), which we define to be the number of ways
to choose an ordered triple (a;, b;, ¢;) satisfying these properties. To do this, we use
the Principle of Inclusion-Exclusion.

There are (n + 1)3 total ordered triples where 0 < a;, b;,¢; < n. We will sub-
tract the n3 triples where 0 doesn’t appear and the n? triples where n doesn’t
appear, and then add back the (n — 1) triples where 0 and n don’t appear, since
they were subtracted twice. Thus,

f(n)=m+1)7>-2n"+(n—-1)*> = 6n.

Now, we notice that n = 1,(20!), or the exponent of the largest power of prime
p that divides 20!, where p is the prime that corresponds to a;. Using Legendre’s
Formula, we find that

15(201) = 18, 13(201) = 8, v5(201) = 4, 17(20!) = 2,
and 1,(20!) = 1 if p is a prime from 11 to 19 (inclusive). Thus,

N = f(18)- f(8)- f(4)- f(2)- (f(1))*
=6%-18-8-4-2-1%
— 915 310

So the number of factors of N is 16 x 11 = . O]


https://artofproblemsolving.com/wiki/index.php/Legendre%27s_Formula
https://artofproblemsolving.com/wiki/index.php/Legendre%27s_Formula

Problem 4. Let AABC be an isosceles triangle with AB = AC' and Z/BAC =
100°. Let point D be on side AC such that BD bisects ZABC. Prove that AD +
DB = BC.

Solution 1. Note that mZABC = mZACB = 40°, and mZABD = mZCBD =
20°. Let point F be on side BC such that BD = BFE. Then m/BDE =
m/BED = 80°, so m/BAD +m/BED = 180°.

We can now see that ADEB is cyclic, so ZABD = ZEBD implies ED = AD.
Also, AEDC ~ AABC, so EC = ED. Then, since FC + BE = BC, it must be
true that AD + DB = BC, and we are done. O

Solution 2. WLOG let BD = 1. By the Law of Sines in AABD,
sinZABD  sin(20°)  sin(20°)
AD = — = — = — :
sin ZA sin(100°)  sin(80°)
Similarly, by the Law of Sines in AC'BD,
_ sinZBDC  sin(120°) V3

sinZC sin(40°)  2sin(40°)°

BC

By Sum-to-Product formulas,
sin(20°) + sin(80°) = 2sin(50°) cos(30°) = v/3sin(50°).

Now, we are ready to show that

sin(20°)
sin(80°)

~ sin(20°) + sin(80°)
N sin(2 - 40°)

~ V/3sin(50°)
 25in(40°) cos(40°)
V3

~ 2sin(40°)

AD+ DB = +1

— BC,

as desired. O



Problem 5. Let n € Nand a; < ap < ag < --- < ag() be the integers less than n
and relatively prime to n. Prove that a; - as - az---agn) = £1 (mod n) for n > 2.
Bonus. For which n is a1 - as - ag- - agpm) = —1 (mod n)?

Solution. First, we must establish the existence of inverses modulo n.

Lemma. {ai,a9,as3, -, a5m)} = {a;a1, 0,02, a;a3,- - , 6,040} (mod n) for all
1 <i<o(n).

Proof. a;a; is coprime to n since a; and a; are individually coprime to n. This
implies that every element in {a;a1, a;a2, a;as, - - -, a;a4(m)} corresponds with one of
the elements in {ay, az, as, - -+, agn)} modulo n.

Also, a;a; # a;a, (mod n) for 1 < j,k <n and j # k. Assuming the contrary,
a;a; = a;a,  (mod n)

implies a;(a; — ax) =0 (mod n). Since ged(a;, n) = 1, this means that n | a; — ay,
SO
a; = a, (mod n).

Thus, 7 = k, a contradiction.
Since the two sets are of the same size, and no two elements of
{aiar, aias, a;az, - -+ ajagmy}  (mod n)

are the same, the two sets are equivalent modulo n. This proves the lemma.

By the lemma, for every a;, there exists an a; such that a;,a; =1 (mod n); we call
a; the inverse of a; (mod n), also denoted as a; ' (mod n).

Notice that if a; is the inverse of a;, then a; is the inverse of a;. Thus, inverses pair
up and cancel out in the product a; - as - az - - - agn). The only case left to handle
is if a; is its own inverse, that is, the case where a? =1 (mod n).

However, such a; also have their neat symmetry, as
a;=1 (modn) < (—a;)*=1 (mod n).
Therefore, a; and —a; both belong to this set of self-inverses, and

ai(—a;) = —a? = -1 (mod n).

It is importnt to note that a; Z —a; (mod n) because if that were the case, then
a; = 5, which is not relatively prime to n for n > 2. For n = 2, it can be easily
verified that a; =1 (mod 2), so the claim is true for n = 2. Hence, if we denote k
as the number of self-inverses modulo n, then

ay - Qg - a3+ - Gyn) = (_1)§ =41 (mod n)

for n > 2, as desired. O



Bonus Solution. As previously shown,
ay - Qg - a3+ - Gpn) = (—1)§ (mod n),

so the problem statement is equivalent to finding n such that & = 2 (mod 4).
(Recall that k is the number of self-inverses modulo n.) Let

_ k1 ke km,
n=pi Py Pm;

and let S; be the number of solutions to 22 = 1 (mod 7). By the Chinese Remainder
Theorem, k = S, = Spkl Ska e Spkm.
1 2 m

Case 1. If p; is odd, then sz_ci = 2.

2=1 (mod p;), we get that

Proof. Given x
2> —1=(z—-1)(z+1)=0 (mod pl).

Since p; is odd and therefore p; > 2, either pfi xr—1or pfi
divide both x — 1 and x + 1. That gives the two solutions

x + 1, since p; cannot

z=1,—1 (mod pM),
SO S &k, = 2.
p;

Case 2. If p;, =2, then Sy =1, Sy = 2, and Sy, = 4 for k; > 2.
Proof. S and Sy can be found manually as having solutions z = 1 (mod 2) and
x =1,3 (mod 4), respectively. For k; > 2, we find that

?2—1=(x—-D(x+1)=0 (mod 2~).

Now, 2%=1 | 2 — 1 or 2571 | 2 + 1 is sufficient since the other factor will contribute
exactly one power of 2. This leads to the four solutions

r=1,28"1 128111 —1 (mod 2%).
Thus, Sor, = 4.
From these two cases, we can find that

k:Sn:ShSpIQcQ "'Spf,gn =2 (mod 4)

Py

if and only if n = 4, p*, or 2p*, as S,, = 2 in those scenarios. Furthermore, n = 2 is
a trivial case with Sy = 1. Hence,

ai-az-ag -Gy = —1 (mod n) <= n = 2.4, p%, 2p",
as desired.

Remark. These solutions coincide with the set of integers n for which there exists
a primitive root (mod n).
O


https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem

