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Problem 1. Consider complex polynomials P (x) = xn + a1x
n−1 + · · · + an

with the zeroes x1, x2, · · · , xn and Q(x) = xn + b1x
n−1 + · · ·+ bn with the zeroes

x2
1, x

2
2, · · · , x2

n. Prove that if a1 + a3 + a5 + · · · and a2 + a4 + a6 + · · · are real
numbers, then b1 + b2 + b3 + · · ·+ bn is also real.

Solution. Let A = a1 + a3 + a5 + · · · and B = a2 + a4 + a6 + · · · . Since

b1 + b2 + b3 + · · ·+ bn = Q(1)− 1,

it is sufficient to show that Q(1) is real. Note that

Q(1) =
n∏

i=1

(1− x2
i )

=
n∏

i=1

(1− xi)(1 + xi)

= (−1)n
n∏

i=1

(1− xi)(−1− xi)

= (−1)nP (1)P (−1).

We know that

P (1) = 1 + a1 + a2 + a3 + . . .

= 1 + A+B,

and

(−1)nP (−1) = (−1)n
(
(−1)n + (−1)n−1a1 + (−1)n−2a2 + (−1)n−3a3 + · · ·

)
= 1− a1 + a2 − a3 + . . .

= 1− A+B.

Thus,
Q(1) = (−1)nP (1)P (−1) = (−1)n(1 + A+B)(1− A+B).

Since A and B are real, Q(1) is real, as desired.
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Problem 2. Ashley and Sophia are playing a game. They take turns flipping
a coin, with Ashley going first, and keep track of the total number of heads they
have flipped. Whoever reaches 2 heads flipped first wins. What is the probability
that Sophia wins? (Note: The two heads need not be consecutive.)

Answer.
11

27

Solution. Let p be the probability that Sophia wins. Then notice that if Ashley’s
first flip is tails, Sophia has a 1− p probability of winning, since it is equivalent to
playing the same game with the roles reversed. Thus, we can write the equation

p =
1

2
(1− p) +

1

2
· P (Sophia wins | Ashley’s first flip is heads).

To find the probability that Sophia wins given that Ashley’s first flip is heads,
we find the probability this happens in n moves and add them up for all possible
values of n. (Note that n ≥ 2, since it’s impossible to win in less than 2 moves.)

Ashley’s first coin flip is given to be a head, and the next n − 1 coin flips must
be tails so that she does not win. There is a 1

2n−1 probability that this sequence
occurs.
On the other hand, Sophia’s nth coin flip must be a head (since she wins on the
nth move), and exactly one of her first n− 1 coin flips is a head; the rest are tails.
Then there is a n−1

2n
probability that this sequence occurs.

Thus, the probability Sophia wins on the nth move given that Ashley’s first
flip is heads is

n− 1

22n−1
,

so the probability that Sophia wins given that Ashley’s first flip is heads is∑
n≥2

n− 1

22n−1
=

1

2

∑
n≥1

n

4n
.

We then use the identity

1

(1− x)2
=

∑
n≥0

(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + . . .

(when |x| < 1 and the sequence converges), which either be proved by squaring the
geometric series expansion of 1

1−x
and using stars and bars, or by differentiating

that expression. We get

1

2

∑
n≥1

n

4n
=

1
4

2 ·
(
1− 1

4

)2 =
2

9
.

Thus, we have that

p =
1

2
(1− p) +

1

2
· 2
9
,

and we can solve to get p =
11

27
.
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Problem 3. Let N be the number of ordered triples of positive integers (a, b, c)
are such that lcm(a, b, c) = 20! and gcd(a, b, c) = 1. Find the number of divisors of
N .

Answer. 176

Solution. Let a = 2a1 · 3a2 · 5a3 · 7a4 · 11a5 · 13a6 · 17a7 · 19a8 , and denote b and c
similarly. Note that for 1 ≤ i ≤ 8, we have

min(ai, bi, ci) = 0 and max(ai, bi, ci) = n,

for some n. We now want to find f(n), which we define to be the number of ways
to choose an ordered triple (ai, bi, ci) satisfying these properties. To do this, we use
the Principle of Inclusion-Exclusion.

There are (n + 1)3 total ordered triples where 0 ≤ ai, bi, ci ≤ n. We will sub-
tract the n3 triples where 0 doesn’t appear and the n3 triples where n doesn’t
appear, and then add back the (n− 1)3 triples where 0 and n don’t appear, since
they were subtracted twice. Thus,

f(n) = (n+ 1)3 − 2n3 + (n− 1)3 = 6n.

Now, we notice that n = νp(20!), or the exponent of the largest power of prime
p that divides 20!, where p is the prime that corresponds to ai. Using Legendre’s
Formula, we find that

ν2(20!) = 18, ν3(20!) = 8, ν5(20!) = 4, ν7(20!) = 2,

and νp(20!) = 1 if p is a prime from 11 to 19 (inclusive). Thus,

N = f(18) · f(8) · f(4) · f(2) · (f(1))4

= 68 · 18 · 8 · 4 · 2 · 14

= 215 · 310.

So the number of factors of N is 16× 11 = 176 .
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Problem 4. Let △ABC be an isosceles triangle with AB = AC and ∠BAC =
100◦. Let point D be on side AC such that BD bisects ∠ABC. Prove that AD +
DB = BC.

Solution 1. Note that m∠ABC = m∠ACB = 40◦, and m∠ABD = m∠CBD =
20◦. Let point E be on side BC such that BD = BE. Then m∠BDE =
m∠BED = 80◦, so m∠BAD +m∠BED = 180◦.

We can now see that ADEB is cyclic, so ∠ABD ∼= ∠EBD implies ED = AD.
Also, △EDC ∼ △ABC, so EC = ED. Then, since EC +BE = BC, it must be
true that AD +DB = BC, and we are done.

Solution 2. WLOG let BD = 1. By the Law of Sines in △ABD,

AD =
sin∠ABD

sin∠A
=

sin(20◦)

sin(100◦)
=

sin(20◦)

sin(80◦)
.

Similarly, by the Law of Sines in △CBD,

BC =
sin∠BDC

sin∠C
=

sin(120◦)

sin(40◦)
=

√
3

2 sin(40◦)
.

By Sum-to-Product formulas,

sin(20◦) + sin(80◦) = 2 sin(50◦) cos(30◦) =
√
3 sin(50◦).

Now, we are ready to show that

AD +DB =
sin(20◦)

sin(80◦)
+ 1

=
sin(20◦) + sin(80◦)

sin(2 · 40◦)

=

√
3 sin(50◦)

2 sin(40◦) cos(40◦)

=

√
3

2 sin(40◦)
= BC,

as desired.
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Problem 5. Let n ∈ N and a1 < a2 < a3 < · · · < aϕ(n) be the integers less than n
and relatively prime to n. Prove that a1 · a2 · a3 · · · aϕ(n) ≡ ±1 (mod n) for n ≥ 2.
Bonus. For which n is a1 · a2 · a3 · · · aϕ(n) ≡ −1 (mod n)?

Solution. First, we must establish the existence of inverses modulo n.

Lemma. {a1, a2, a3, · · · , aϕ(n)} ≡ {aia1, aia2, aia3, · · · , aiaϕ(n)} (mod n) for all
1 ≤ i ≤ ϕ(n).

Proof. aiaj is coprime to n since ai and aj are individually coprime to n. This
implies that every element in {aia1, aia2, aia3, · · · , aiaϕ(n)} corresponds with one of
the elements in {a1, a2, a3, · · · , aϕ(n)} modulo n.

Also, aiaj ̸≡ aiak (mod n) for 1 ≤ j, k ≤ n and j ̸= k. Assuming the contrary,

aiaj ≡ aiak (mod n)

implies ai(aj − ak) ≡ 0 (mod n). Since gcd(ai, n) = 1, this means that n | aj − ak,
so

aj ≡ ak (mod n).

Thus, j = k, a contradiction.

Since the two sets are of the same size, and no two elements of

{aia1, aia2, aia3, · · · , aiaϕ(n)} (mod n)

are the same, the two sets are equivalent modulo n. This proves the lemma.

By the lemma, for every ai, there exists an aj such that aiaj ≡ 1 (mod n); we call
aj the inverse of ai (mod n), also denoted as a−1

i (mod n).

Notice that if aj is the inverse of ai, then ai is the inverse of aj . Thus, inverses pair
up and cancel out in the product a1 · a2 · a3 · · · aϕ(n). The only case left to handle
is if ai is its own inverse, that is, the case where a2i ≡ 1 (mod n).

However, such ai also have their neat symmetry, as

a2i ≡ 1 (mod n) ⇐⇒ (−ai)
2 ≡ 1 (mod n).

Therefore, ai and −ai both belong to this set of self-inverses, and

ai(−ai) ≡ −a2i ≡ −1 (mod n).

It is importnt to note that ai ̸≡ −ai (mod n) because if that were the case, then
ai =

n
2
, which is not relatively prime to n for n > 2. For n = 2, it can be easily

verified that a1 ≡ 1 (mod 2), so the claim is true for n = 2. Hence, if we denote k
as the number of self-inverses modulo n, then

a1 · a2 · a3 · · · aϕ(n) ≡ (−1)
k
2 ≡ ±1 (mod n)

for n > 2, as desired. □
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Bonus Solution. As previously shown,

a1 · a2 · a3 · · · aϕ(n) ≡ (−1)
k
2 (mod n),

so the problem statement is equivalent to finding n such that k ≡ 2 (mod 4).
(Recall that k is the number of self-inverses modulo n.) Let

n = pk11 pk22 · · · pkmm ,

and let Si be the number of solutions to x2 ≡ 1 (mod i). By the Chinese Remainder
Theorem, k = Sn = S

p
k1
1
S
p
k2
2
· · ·Spkmm

.

Case 1. If pi is odd, then S
p
ki
i
= 2.

Proof. Given x2 ≡ 1 (mod pi), we get that

x2 − 1 ≡ (x− 1)(x+ 1) ≡ 0 (mod pkii ).

Since pi is odd and therefore pi > 2, either pkii | x− 1 or pkii | x+ 1, since pi cannot
divide both x− 1 and x+ 1. That gives the two solutions

x ≡ 1,−1 (mod pkii ),

so S
p
ki
i
= 2.

Case 2. If pi = 2, then S2 = 1, S4 = 2, and S2ki = 4 for ki > 2.
Proof. S2 and S4 can be found manually as having solutions x ≡ 1 (mod 2) and
x ≡ 1, 3 (mod 4), respectively. For ki > 2, we find that

x2 − 1 ≡ (x− 1)(x+ 1) ≡ 0 (mod 2ki).

Now, 2ki−1 | x− 1 or 2ki−1 | x+ 1 is sufficient since the other factor will contribute
exactly one power of 2. This leads to the four solutions

x ≡ 1, 2ki−1 − 1, 2ki−1 + 1,−1 (mod 2ki).

Thus, S2ki = 4.

From these two cases, we can find that

k = Sn = S
p
k1
1
S
p
k2
2
· · ·Spkmm

≡ 2 (mod 4)

if and only if n = 4, pk, or 2pk, as Sn = 2 in those scenarios. Furthermore, n = 2 is
a trivial case with S2 = 1. Hence,

a1 · a2 · a3 · · · aϕ(n) ≡ −1 (mod n) ⇐⇒ n = 2, 4, pk, 2pk,

as desired.

Remark. These solutions coincide with the set of integers n for which there exists
a primitive root (mod n).
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