Instructions:

- You will have 2 hours to complete the CANDLE.
- All answers must be fully simplified; fractions must be reduced to lowest terms, and square factors must be moved outside radicals.
- Decimals are accepted provided they are exact.
- You may **NOT** use rulers, compasses, or calculators. You may only use pens, pencils, blank paper, and erasers.
- Scrapwork will be **collected**. Write your name on each piece of scrap paper you use.

Please write your full name and answers clearly and legibly.

Name: _____

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	

Problem 1. If $x + y + z \equiv 20 \pmod{41}$ and $x^2 + y^2 + z^2 \equiv 33 \pmod{41}$, compute $(x + y)^2 + (x + z)^2 + (y + z)^2 \pmod{41}$.

Problem 2. Six people are sitting at a round table in a cafe. Each one orders a cookie or a brownie with equal probability. What is the probability that no two adjacent people order brownies?

Problem 3. Find the sum of real x such that $0 \le x < 2\pi$ satisfying the equation $\cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x = \frac{1}{32 \sin x}$.

Problem 4. Let $\triangle ABC$ be a triangle with $\angle A = 60^{\circ}$, AB = 5, AC = 7. Let the bisector of $\angle BAC$ meet the circumcircle of ABC again at D. Find the area of quadrilateral ABDC.

Problem 5. Find all integer k such that $\frac{k^3+29k}{k^2-1}$ is also an integer.

Problem 6. Sophia rolls five six-sided dice and sums the numbers that come up. What is the probability that the result is a multiple of 7?

Problem 7. Let $\triangle ABC$ be a triangle where $\angle B$ is obtuse. Let ℓ be the external angle bisector of A, and let ℓ intersect line BC at D and the circumcircle of ABC at $E \neq A$. Let P be the intersection of AC and BE. If AC = BE = 45 and AB = 9, what is the length of DP?

Problem 8. Steven's locker combination is an ordered triple of integers (a, b, c), such that $1 \le a, b, c \le 20$. He forgot his exact combination, but he remembers that the gcd(a, b, c) = 1. How many possible locker combinations could Steven have?

Problem 9. For real numbers x and y,

$$(1 - xy)^2 = \frac{4}{13}(1 + x^2)(1 + y^2)$$
$$(x + 1)(y + 1) = 12.$$

Find all ordered pairs of solutions (x, y).

Problem 10. Let N be the number of functions

 $f: \{1, 2, 3, \dots, 12\} \mapsto \{1, 2, 3, \dots, \operatorname{lcm}(1, 2, 3, \dots, 12)\}$

such that all integers a, b such that $1 \le b < a \le 12$ satisfy $a - b \mid f(a) - f(b)$. Find $\tau(\tau(N))$, where $\tau(k)$ denotes the number of positive integer divisors of k.

Problem 11. Let $\triangle ABC$ be a triangle with AB = 15, AC = 13, and BC = 14. Points K and L are on the same side of \overline{BC} as A, and satisfy $\angle ABK = \angle ABC$ and $\angle ACL = \angle ACB$. Lines \overline{KB} and \overline{LC} intersect at D. If O is the circumcenter of $\triangle ABC$, and the length of OD can be expressed as $\frac{a}{b}$, find a + b.

Problem 12. The sequence a_0, a_1, \ldots is defined by

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} a_{n-i} = n^{3}$$

for all nonnegative n. If $\tau(a_{2021})$ is the number of divisors of a_{2021} , find the remainder of $\tau(a_{2021})$ when divided by 1000.