
Team Solutions

1. Given a trapezoid with bases AB and CD, there exists a point E on CD such that drawing the segments AE
and BE partitions the trapezoid into 3 similar isosceles triangles, each with long side twice the short side.
What is the sum of all possible values of CD

AB ?

Proposed by Adam Bertelli

Answer:
65

4

Solution: For each of the three triangles, we will call it vertical, or V, if the short side lies on one of the
bases, and horizontal, or H, otherwise. From left to right, we can consider the value of CD

AB over all possible
sequences of triangle orientations:

HHH/VVV: 1+1
1 = 2

HHV/VHH: 4+1
4 = 5

4

HVV/VVH: 4+1
1 = 5

HVH: 4+4
1 = 8

VHV: impossible

Thus in total, our possible values are 2 + 5
4 + 5 + 8 =

65

4
.

2. Let p1, p2, p3, p4, p5, p6 be distinct primes greater than 5. Find the minimum possible value of

p1 + p2 + p3 + p4 + p5 + p6 − 6 min (p1, p2, p3, p4, p5, p6) .

Proposed by Oliver Hayman

Answer: 46

Solution: Assume p1 < p2 < p3 < p4 < p5 < p6. We have that p1 + p2 + p3 + p4 + p5 + p6 −
6 min (p1, p2, p3, p4, p5, p6) =p2 − p1 + p3 − p1 + p4 − p1 + p5 − p1 + p6 − p1 =5(p2 − p1) + 4(p3 − p2) +
3(p4 − p3) + 2(p5 − p4) + (p6 − p5).

Note that pi+1 − pi is even for all i, as any prime greater than 5 is odd. Additionally, it is impossible for
pi+2−pi+1 = pi+1−pi = 2 for any i, as each of pi, pi+2, pi+4 gives a different residue modulo 3, and no prime
greater than 5 is divisible by 3. With only this criteria, clearly (p2 − p1, p3 − p2, p4 − p3, p5 − p4, p6 − p5) =
(2, 4, 2, 4, 2) minimizes the expression, which gives 5(p2−p1)+4(p3−p2)+3(p4−p3)+2(p5−p4)+(p6−p5) = 42.
However, this value cannot actually be achieved, as the numbers p1, p1 + 2, p1 + 6, p1 + 8, p1 + 12, p1 + 14 are
congruent to p1, p1 + 2, p1 + 1, p1 + 3, p1 + 2, p1 + 4 mod 5, giving one of the numbers must be divisible by 5.

Therefore, 42 is impossible to achieve, so the next value we consider is 44. However, the only possible sequence
giving 44 would be (p2 − p1, p3 − p2, p4 − p3, p5 − p4, p6 − p5) = (2, 4, 2, 4, 4), which is impossible to achieve
as we have that p4, p4 + 4, p4 + 4 + 4 give 3 different residues mod 3. Next we consider 46. This can be
achieved if (p2− p1, p3− p2, p4− p3, p5− p4, p6− p5) = (2, 4, 2, 4, 6), which is possible if (p1, p2, p3, p4, p5, p6) =

(11, 13, 17, 19, 23, 29). Therefore, the smallest possible value is 46 .

3. Evaluate
∞∑
i=0

7i

(7i + 1)(7i + 7)
.

Proposed by Connor Gordon



Answer:
7

48

Solution: Let S be the desired sum. Divide numerator and denominator by 7 to get

S =

∞∑
i=0

7i−1

(7i + 1)(7i−1 + 1)

The denominator of the summand looks promising for telescoping, so with some wishful thinking we set up

1

7i−1 + 1
− 1

7i + 1
=

7i − 7i−1

(7i + 1)(7i−1 + 1)
=

6(7i−1)

(7i + 1)(7i−1 + 1)
.

This means that

6S =

∞∑
i=0

(
1

7i−1 + 1
− 1

7i + 1

)
,

which clearly telescopes to 1
7−1+1 = 7

8 . Diving by 6, we finally arrive at S = 7
48 .

4. How many four-digit positive integers a1a2a3a4 have only nonzero digits and have the property that |ai−aj | 6=
1 for all 1 ≤ i < j ≤ 4?

Proposed by Kyle Lee

Answer: 2021

Solution: Note that the problem is equivalent to selecting four (not necessarily distinct) digits from
{1, 2, 3, 4, 5, 6, 7, 8, 9} satisfying the condition and then permuting them.

If there are 4 distinct digits, then a stars and bars argument shows that this is equivalent to finding the
number of positive integer solutions to a′ + b+ c+ d+ e′ = 5 + 2, which is

(
6
4

)
. So, there are a total of

(
6
4

)
· 4!

solutions here.

If there are 3 distinct digits, then there are
(
7
3

)
· 4!2 · 3 solutions via a similar argument.

If there are 2 distinct digits, then there are two subcases: numbers of the form aabb and abbb. It can easily be
seen that there are

(
8
2

)
· 4!
2!2! and

(
8
2

)
· 4!3! · 2 solutions, respectively.

If there is 1 distinct digit, there are trivially 9 solutions.

The grand total is
(
6
4

)
· 4! +

(
7
3

)
· 4!2 · 3 +

(
8
2

)
· 4!
2!2! +

(
8
2

)
· 4!3! · 2 + 9 = 2021 .

5. Let N be the fifth largest number that can be created by combining 2021 1’s using addition, multiplication,
and exponentiation, in any order (parentheses are allowed). If f(x) = log2(x), and k is the least positive
integer such that fk(N) is not a power of 2, what is the value of fk(N)?

(Note: fk(N) = f(f(· · · (f(N)))), where f is applied k times.)

Proposed by Adam Bertelli

Answer: 327

Solution: First, let’s define M(x) to be the largest number we can make out of only 1’s. The first few values
of M(n), starting from n = 1, are 1, 2, 3, 4, 9(or 32), 27(or 33), and it is clear that after this point we will have
M(x+ 2) = 2M(x), since this is the most efficient way to increase our number for large enough M(x).

Now, this tells us that M(2021) will be a tower of 22
2...

with 1007 2’s and then M(7) at the very top. On the
other hand, the largest number that we can make without first having a tower of 1007 2’s, would be a tower
of 1006 2’s, followed by 3M(6) at the very top (since the further down we change something, the smaller our



number will end up being, because for large numbers, having a larger exponent is way more important than
a larger base). Let

B = 2...
3M(6)

be the number we just described. Then, our solution will first consider how many numbers we can form using
1007 2’s and some expression of 7 1’s at the top, and only when these become smaller than B do we have to
begin considering other options.

We can pretty easily list out the largest few possibilities for our expression using 7 1’s as

23
2

, 22
3

, 34, 43(or 22·3), 25, . . . or in other words 512, 256, 81, 64, 32, . . .

Now, we would like to compare these values (stacked on top of 1007 2’s) to B. We can do this by noting that
3M(6), or 327, satisfies

232 < 811 < 913 < 327

and
327 < 432 = 264

so B lies between the 4th and 5th elements on our list. This tells us that the 5th largest possible number we
can create is in fact B, so our answer is simply the result of repeatedly taking log2 of B until it is no longer
a power of 2. Each application of log2 corresponds to removing a 2 from our stack of 2’s, so once we have

removed all of them, the remaining number is simply 3f(6), or 327 .

Note: If B happened to come before the 4th number, and we ended up having to check other options, we
could simply repeat this argument with 2f(9) and 3f(8), and so on until we could make sure we didn’t need to
consider any other values. However, the number of possible expressions near the top grows exponentially, so
each step would take longer and longer to check.

6. Let P (x), Q(x), and R(x) be three monic quadratic polynomials with only real roots, satisfying

P (Q(x)) = (x− 1)(x− 3)(x− 5)(x− 7)

Q(R(x)) = (x− 2)(x− 4)(x− 6)(x− 8)

for all real numbers x. What is P (0) +Q(0) +R(0)?

Proposed by Kyle Lee

Answer: 129

Solution: Note that since P (Q(x)) has distinct four roots, Q(1), Q(3), Q(5), Q(7) must map to at most
exactly two distinct values. It follows that Q(x) is symmetric about x = 4, so Q(x) = (x − 4)2 + a, for
some constant a. Plugging x = 1, 3, 5, 7 into Q(x) gives the two distinct values of a + 1 and a + 9. Since
P (a+ 1) = P (a+ 9) = 0, it follows that P (x) is symmetric about x = a+ 5, so P (x) = (x− (a+ 5))2 + b, for
some constant b.

Doing the same thing on Q(R(x)), we have that R(x) = (x − 5)2 + c and Q(x) = (x − (c + 5))2 + d, for
some constants c and d. But, we found earlier that Q(x) = (x − 4)2 + a, so 2(c + 5) = 8 and c = −1.
Therefore, R(x) = (x− 4)(x− 6). Plugging in x = 2, 4, 6, 8 into R(x) gives the two distinct values of 0 and 8,
so Q(x) = x(x − 8). Lastly, plugging in x = 1, 3, 5, 7 into Q(x) gives the two distinct values of −7 and −15,
so P (x) = (x + 7)(x + 15). In summary, we have found that P (x) = x2 + 22x + 105, Q(x) = x2 − 8x, and

x2 − 10x+ 24, so the requested sum is 105 + 0 + 24 = 129 .

7. Let P and Q be fixed points in the Euclidean plane. Consider another point O0. Define Oi+1 as the center
of the unique circle passing through Oi, P and Q. (Assume that Oi, P,Q are never collinear.) How many
possible positions of O0 satisfy that O2021 = O0?



Proposed by Fei Peng

Answer: 22021 − 2

Solution: Say P = (0, 1) and Q = (0,−1). Then every O≥1 is on the x-axis, so say O0 = (x, 0). Observe
that if Oi = (cot(α), 0), then Oi+1 = (cot(2α), 0). Thus, we are essentially finding the number of α ∈ (0, π)
such that x = cot(α) = cot(22021α). That is, k := (22021 − 1)α/π should be an integer. In this range of α,

0 < k < 22021 − 1, so there are 22021 − 2 choices of k, each corresponding to a position of O0.

8. Determine the number of functions f from the integers to {1, 2, · · · , 15} which satisfy

f(x) = f(x+ 15)

and
f(x+ f(y)) = f(x− f(y))

for all x, y.

Proposed by Vijay Srinivasan

Answer: 375

Solution: Let n = gcd(f(0), f(1), f(2), · · · , f(14), 15), so that n ∈ {1, 3, 5, 15}. Since n can be written as a
sum of multiples of numbers of the form f(y), it follows that f(x) = f(x+ n) for all x. We case on the value
of n.

If n = 1, then f is a constant function with some value c, and gcd(c, 15) = 1. There are 8 such values of c in
the set {1, 2, . . . , 15}.
If n = 3, then f is determined by f(0), f(1), f(2), subject to the constraint gcd(f(0), f(1), f(2), 15) = 3. We
see that (f(0), f(1), f(2)) must consist of multiples of 3, and they cannot all be equal to 15. There are thus
53 − 1 possible f from this case.

If n = 5, proceed as in the previous case to conclude that there are 35 − 1 possible f .

If n = 15, then clearly f(0) = f(1) = · · · = f(14) = 15, so there is only one possible function f .

The final count is 8 + (35 − 1) + (53 − 1) + 1 = 375 .

9. Let ABC be a triangle with circumcenter O. Additionally, ∠BAC = 20◦ and ∠BCA = 70◦. Let D,E be
points on side AC such that BO bisects ∠ABD and BE bisects ∠CBD. If P and Q are points on line BC
such that DP and EQ are perpendicular to AC, what is ∠PAQ?

Proposed by Daniel Li

Answer: 25

Solution: Note that ABC is a right triangle. Since O is its circumcenter, triangle AOB is isosceles with
∠ABO = ∠BAO = 20◦. This means ∠DBO = 25◦, so ∠EBD = ∠EBC = 25◦.

Since ∠ABP = 90◦ = ∠ADP , ADBP is cyclic. Similarly, AEBQ is cyclic. Therefore, we have

∠PAQ = ∠PAD − ∠QAE

= ∠CBD − ∠CBE

= ∠EBD

= 25◦



10. How many functions f : {1, 2, 3, . . . , 7} → {1, 2, 3, . . . , 7} are there such that the set F = {f(i) : i ∈ {1, . . . , 7}}
has cardinality four, while the set G = {f(f(f(i))) : i ∈ {1, . . . , 7}} consists of a single element?

Proposed by Sam Delatore

Answer: 23520

Solution: Let H = {f(f(i)) : i ∈ {1, . . . , 7}}. Clearly F ⊇ H ⊇ G.

Case 1: |H| = 4.

Suppose without loss of generality that F = H = {1, 2, 3, 4}. Then, f permutes the values from 1 to 4, giving
G = {1, 2, 3, 4}, a contradiction.

Case 2: |H| = 3.

Suppose F = {1, 2, 3, 4} and H = {1, 2, 3}. Further suppose f(4) = 1. Since 2, 3 ∈ H, we must have f(1), f(2)
and f(3) cover 2 and 3. This places 2, 3 ∈ G, contradiction.

Case 3: |H| = 2.

Suppose F = {1, 2, 3, 4}, H = {1, 2}, G = {1}. Then, f(1) = f(2) = 1 is forced. At least one of f(3) or f(4)
must be 2, with three options. Finally, we need f(5), f(6), and f(7) to cover 3 and 4; 18 choices satisfy this.

There are
(
7
4

)(
4
2

)(
2
1

)
= 420 ways to choose F , H, and G, each giving 3 · 18 = 54 different functions. There are

54 · 420 = 22680 total functions in this case.

Case 4: |H| = 1.

Suppose F = {1, 2, 3, 4}, H = G = {1}. f(1) = f(2) = f(3) = f(4) = 1 is forced. We must have f(5), f(6),
and f(7) cover 2, 3, and 4; six choices satisfy this.

There are
(
7
4

)(
4
1

)(
1
1

)
= 140 ways to choose F , H, and G, each giving six different functions. There are

6 · 140 = 840 total functions in this case.

The answer is 0 + 0 + 22680 + 840 = 23520

11. The set of all points (x, y) in the plane satisfying x < y and x3 − y3 > x2 − y2 has area A. What is the value
of A?

Proposed by Adam Bertelli

Answer:
π
√

3

9

Solution: We are given that x− y < 0, so dividing through the inequality x3 − y3 > x2 − y2 by x− y and
rearranging gives

x2 + xy + y2 < x+ y =⇒ f(x, y) < 0

where f(x, y) = x2 − x + xy − y + y2. Clearly f is an irreducible quadratic, and for |x|, |y| large, we have
f > 0, so the inequality f < 0 defines the interior of an ellipse E. Since f is symmetric in x and y, the line
y = x is an axis of E. Plugging in y = x to f(x, y) = 0, we obtain 3x2 − 2x = 0, so the intersections of this
axis with E occur at x = 0 and x = 2

3 . This implies that E is centered at
(
1
3 ,

1
3

)
and has one of its radii equal

to
√
2
3 .

Since the other axis is perpendicular to the first and passes through the center, it is given by y = 2
3 − x.

Observe that f(x, y) = (x+ y)2 − (x+ y)− xy, so plugging in x+ y = 2
3 to f(x, y) = 0 gives

0 = f

(
x,

2

3
− x
)

= −2

9
− x

(
2

3
− x
)

= x′2 − 1

3

where x′ = 1
3 −x measures both the horizontal and vertical distance to the center. We find that the solutions

are x′ = ±
√
3
3 , so the other radius of E is

√
3·
√
2

3 .



Since we only want the area of the half of the ellipse where x < y, we compute a final answer of

1

2
· π ·
√

2

3
·
√

3 ·
√

2

3
=

π
√

3

9
.

12. Let 4ABC be a triangle, and let l be the line passing through its incenter and centroid. Assume that B and
C lie on the same side of l, and that the distance from B to l is twice the distance from C to l. Suppose also
that the length BA is twice that of CA. If 4ABC has integer side lengths and is as small as possible, what
is AB2 +BC2 + CA2?

Proposed by Thomas Lam

Answer: 61

Solution: This solution uses the following facts from physics: A set of point-masses on a plane is balanced
at the centroid, and furthermore is balanced along any axis that passes through the centroid. Also, if it is
balanced along an axis, then the torques induced by the masses must cancel.

Now let the distances from A,B,C to l be x, y, z, respectively, and let BC,CA,AB be a, b, c, respectively.
Assign A,B,C equal masses so that the centroid of the system is G. Since l passes through G, the system is
balanced about the axis l, and hence the torques induced by A,B, and C must sum to zero. Hence, since we
are given that B and C lie on the same side of l, we may write x = y + z.

Next, assign masses of a, b, c to A,B,C, so that the system is balanced over the incenter. Again, l passes
through I, so the system is balanced about the axis l. Now we may write ax = by + cz.

Combining the equations and eliminating x, we obtain y(b− a) = z(a− c). But we are given that y = 2z, so
2(b− a) = (a− c) and 3a = 2b+ c. We are also given that c = 2b, thus 3a = 4b = 2c. The smallest solution to

this equation in positive integers is given by (a, b, c) = (4, 3, 6), thus the desired answer is 42 + 32 + 62 = 61 .

Alternate Solution:

We use Barycentric coordinates. Consider B′, the reflection of B over C. Then B, I,O are collinear by the
distance condition. We have B′ = (0 : 1 : −2), I = (a, b, c), and G = (1 : 1 : 1). Thus we require:∣∣∣∣∣∣

0 1 −2
a b c
1 1 1

∣∣∣∣∣∣ = 0

This reduces to 3a = 2b+ c, and we may proceed as before.

13. Let p = 3 · 1010 + 1 be a prime and let pn denote the probability that p | (kk − 1) for a random k chosen
uniformly from {1, 2, · · · , n}. Given that pn · p converges to a value L as n goes to infinity, what is L?

Proposed by Vijay Srinivasan

Answer: 90

Solution: First observe that am mod p is uniquely determined by the values of a mod p and m mod (p− 1).
It follows that kk mod p is uniquely determined by the value of k mod p(p− 1). It follows that L = p · pn for
n = p(p− 1).

Let a be an element of Z/pZ, and let d be the order of a modulo p. If k is a positive integer with k ≡ a mod p,
then kk ≡ 1 mod p if and only if k ≡ 0 mod d. It follows that there are exactly p−1

d residue classes modulo
p(p − 1) for which kk ≡ 1 mod p and k ≡ a mod p. For a given residue class a mod p, there is then a 1/d



chance of having k ≡ a mod p satisfy kk ≡ 1 mod p, with k chosen uniformly modulo p − 1. Since, for each
d | (p− 1), there are φ(d) elements of Z/pZ of order d, we get

L = p · 1

p(p− 1)

∑
d|p−1

φ(d) · p− 1

d
=
∑
d|p−1

φ(d)

d
.

For ease we let f(b) =
∑
d|b

φ(d)
d , which is a multiplicative function. To compute L = f(p − 1) it suffices to

compute f on prime powers. For a prime power qm, with m > 0, we have φ(qm)/qm = 1− 1/q; it follows that

f(qm) = 1 +m− m

q
.

Finally, for p− 1 = 3 · 210 · 510, we get

f(p− 1) =

(
1 + 1− 1

3

)(
1 + 10− 10

2

)(
1 + 10− 10

5

)
= 90.

14. Let S be the set of lattice points (x, y) ∈ Z2 such that −10 ≤ x, y ≤ 10. Let the point (0, 0) be O. Let
Scotty the Dog’s position be point P , where initially P = (0, 1). At every second, consider all pairs of points
C,D ∈ S such that neither C nor D lies on line OP , and the area of quadrilateral OCPD (with the points
going clockwise in that order) is 1. Scotty finds the pair C,D maximizing the sum of the y coordinates of C
and D, and randomly jumps to one of them, setting that as the new point P . After 50 such moves, Scotty
ends up at point (1, 1). Find the probability that he never returned to the point (0, 1) during these 50 moves.

Proposed by David Tang

Answer:
16

25

Solution: We notice that areas of triangle OCP and ODP are both multiples of 1/2 by shoelace on lattice
points, so both have to be 1/2, since none can be 0 by the collinearity condition. Let C = (xc, yc), D = (xd, yd),
P = (xp, yp). By shoelace, we have that C,D are points such that ycxp−ypxc = 1 and ydxp−ypxd = −1. We
find that these are equivalent to moving up and down terms in the degree 10 Farey sequence, restricted to the
y > 0 half plane (at least for the first 50 moves). Another way to see this is that, given line OP , the points
we can move to are the first points we hit when sweeping this line clockwise or counterclockwise, centered
around O.

Now, we want to find the position of the term (1, 1) in this sequence. This clearly occurs after every point in the
upper half triangle of the first quadrant, so we count the number of such points as φ(1)+φ(2)+· · ·+φ(10) = 31,
meaning (1, 1) is the 32nd point in our sequence. This tells us that in total, Scotty went up in our sequence
41 times, and down 9 times, so by the Ballot Theorem, we see that the probability that we never reach the

starting point again is 41−9
41+9 =

16

25
.

15. Adam has a circle of radius 1 centered at the origin.

- First, he draws 6 segments from the origin to the boundary of the circle, which splits the upper (positive y)
semicircle into 7 equal pieces.

- Next, starting from each point where a segment hit the circle, he draws an altitude to the x-axis.

- Finally, starting from each point where an altitude hit the x-axis, he draws a segment directly away from
the bottommost point of the circle (0,−1), stopping when he reaches the boundary of the circle.

What is the product of the lengths of all 18 segments Adam drew?



Proposed by Adam Bertelli

Answer:
73

212132

Solution: The 6 radii have unit length and so can be ignored. For k = 1, 2, . . . , 6, let θk = πk
7 . Let bk and

gk denote the lengths of the kth blue and green segments from the right, respectively. Clearly bk = sin θk.
The distance from (0,−1) to the foot of the kth blue segment is

√
1 + cos2 θk by the Pythagorean theorem,

so Power of a Point says that gk
√

1 + cos2 θk = b2k. It follows that the desired product P is given by

P =

6∏
k=1

bkgk =

6∏
k=1

sin3 θk√
1 + cos2 θk

.

Let Q =
∏6
k=1 sin θk and R =

∏6
k=1

√
1 + cos2 θk.

To evaluate Q, we write

Q =

3∏
k=1

sin2 θk =

3∏
k=1

1− cos 2θk
2

=
1

26

3∏
k=1

(2− 2 cos 2θk).

Let A(x) be the monic cubic polynomial with roots 2 cos 2θk for k = 1, 2, 3, so that Q = A(2)
26 .

To evaluate R, we write cos2 θk = 1+cos 2θk
2 so we have

R =

6∏
k=1

√
1 + cos2 θk =

3∏
k=1

(1 + cos2 θk) =

3∏
k=1

3 + cos 2θk
2

=
1

26

3∏
k=1

(6 + 2 cos 2θk)

so R = −A(−6)
26 . We conclude that

P =
Q3

R
= − A(2)3

212A(−6)

It remains to compute the polynomial A. Observe that A is the minimal polynomial of ζ+ζ−1, where ζ = e2iθ1 .
The minimal polynomial of ζ is x6 +x5 + · · ·+ 1. Substituting y = x+x−1, this becomes x3(y3 + y2−2y−1),
so A(y) = y3 + y2 − 2y − 1. We now evaluate A(2) = 7 and A(−6) = −169 and so obtain the desired answer.


