
2019 Spring Stuyvesant Team Contest Solutions
1. Compute

1

20192 + 2019
+

2019

20192 − 2019
− 2

20192 − 1
.

Solution

Let x = 2019. We simplify the expression given:

1

x2 + x
+

x

x2 − x
+

2

x2 − 1
=

x− 1

x3 − x
+
x(x+ 1)

x3 − x
− 2x

x3 − x

=
(x− 1) + (x2 + x)− 2x

x3 − x

=
x2 − 1

x3 − x

=
1

x

Therefore, the answer is 1
x = 1

2019 .

2. A mean teacher splits a group of 10 students into 3 groups. A pair of students are called “happy” if
they’re in the same group. What is the minimum possible number of happy pairs of students?

Solution

Intuitively, we would like the sizes of groups to be as close together as possible. Thus the answer should
be (

3

2

)
+

(
3

2

)
+

(
4

2

)
= 12 .

To prove that this is optimal, one can use a “smoothing” argument via the following claim, which tells
us that making group sizes closer together decreases the number of happy pairs of students.

Claim. If a, b are positive integers with a > b+ 1 then(
a

2

)
+

(
b

2

)
>

(
a− 1

2

)
+

(
b+ 1

2

)
.

This claim can be proven with simple algebraic manipulations.

3. Ethan’s score on any test is at most 100. Suppose that his average after taking k tests is k, for any k
less than or equal to the number of tests he takes. Compute the greatest number of tests Ethan can
take.

Solution

Since the average of the first k test scores is k, the sum of the first k test scores is k2. This means
Ethan scored k2 − (k − 1)2 = 2k − 1 on the kth test. Since 2k − 1 ≤ 100 and k is an integer, we find

k ≤ 50 . This is indeed attainable with scores of 1, 3, 5 . . . , 99.

4. Compute the greatest nonnegative integer n < 2019 such that 2d is a divisor of n for all proper divisors
d of n.

Solution

Note that n = 0 works. Now suppose n is positive. We claim that n must be a power of 2. Suppose
n is not a power of 2. Then n = 2α ·m for some nonnegative integer α and some odd positive integer
m > 1. But then 2α is a proper divisor of n, so 2α+1 must also divide n. This is not possible, so n is
indeed a power of 2. Powers of 2 do work, so the answer is 1024 .



5. Let a, b, c be positive reals such that −a2 + b2 + c2 : a2 − b2 + c2 : a2 + b2 − c2 = 1 : 2 : 3. Compute
a : b : c.

Solution

Let SA = −a2 + b2 + c2 and define SB and SC similarly. We have

SA : SB : SC = 1 : 2 : 3
=⇒ SB + SC : SC + SA : SA + SB = 2 + 3 : 3 + 1 : 1 + 2
=⇒ 2a2 : 2b2 : 2c2 = 5 : 4 : 3
=⇒ a2 : b2 : c2 = 5 : 4 : 3

=⇒ a : b : c =
√

5 : 2 :
√

3

6. How many of the first 20 positive integers can be expressed as both a sum and difference of two squares
of integers?

Solution

Note that for any integer a, a2 ≡ 0 or a2 ≡ 1 (mod 4). This means that for any integers x and y,
x2 + y2 6≡ 3 (mod 4) and x2− y2 6≡ 2 (mod 4). Therefore, if N is expressible as a sum and a difference
of squares, N 6≡ 2, 3 (mod 4). Also, if N 6≡ 2 (mod 4), then N can indeed be written as a difference
of 2 squares by factoring N into two integers of the same parity and letting these factors be x+ y and
x − y. Testing for sums of squares, we find all positive integers less than or equal to 20 work, except
N = 12. This gives us a total of 9 solutions.

7. The point (0, 0) is successively rotated 90◦ counterclockwise about each of the points

(1, 0), (2, 0), (3, 0), . . . , (100, 0)

in that order. Compute the area of the region above the path of the point and below the x-axis.

Solution

Note that the first 4 rotations follow arcs along (0, 0)→ (1,−1)→ (3,−1)→ (4, 0)→ (4, 0). Thus the
path has a repeating portion every 4 rotations. The area between the x-axis and one such portion of
the path is the sum of the areas of 2 quarter circles of radius 1, 1 quarter circle of radius

√
2, and 2

isosceles right triangles with legs of length 1. There are 25 of these repeated portions, so the answer is

25

(
2 · 1

4
· π · 12 +

1

4
· π ·
√

2
2

+ 2 · 1

2
· 1 · 1

)
= 25 + 25π .

8. Compute the least positive integer n such that there exists a perfect square whose remainder when
dividing by 2n is not a perfect square.

Solution

When testing, the remainders when a perfect square is divided by 2n are:

n = 1 : 0, 1

n = 2 : 0, 1

n = 3 : 0, 1, 4

n = 4 : 0, 1, 4, 9

When n = 5, we see that 72 − 32 = 17 is not a perfect square, so we see n = 5 is the minimal n.

9. Let A, B, C, and P be distinct points in the plane such that PA = PB = PC. Suppose that segments
PB and AC intersect at D such that BC = CD. If ∠APC = 60◦, compute ∠BPC.

Solution



Notice that we may draw a circle centered at P passing through A, B, and C, as shown above. Now,
since 4BCD and 4BPC are both isosceles and share a base angle at B, they are similar. By inscribed

arcs, ∠APB = 2∠ACB = 2∠BPC. Thus ∠APC = 3∠BPC which gives ∠BPC = 20◦ .

10. If
1

K
=

1

1919
+

1

1920
+

1

1921
+ · · ·+ 1

2019
,

compute bKc.
Solution

Note that
1

K
<

1

1919
+

1

1919
+ · · ·+ 1

1919
=

101

1919
=

1

19
.

Moreover,
1

K
>

1

2020
+

1

2020
+ · · ·+ 1

2020
=

101

2020
=

1

20
.

Therefore,
1

20
<

1

K
<

1

19
,

so 19 < K < 20. Thus the answer is bKc = 19 .

11. Suppose a, b, c satisfy abc = 1, a+ 1
b = 1

2 , b+ 1
c = 3

2 . Compute c+ 1
a .

Solution

Take the product of the given expressions:(
a+

1

b

)(
b+

1

c

)(
c+

1

a

)
= abc+

1

abc
+
ab

a
+
bc

b
+
ca

c
+

a

ca
+

b

ba
+

c

bc

= 2 + a+ b+ c+
1

a
+

1

b
+

1

c

= 2 +

(
a+

1

b

)
+

(
b+

1

c

)
+

(
c+

1

a

)
.

Let x = c+ 1
a . Then

1

2
· 3

2
· x = 2 +

1

2
+

3

2
+ x.

Therefore, x = −16 .



12. In the figure below, 4ADB ∼ 4DBE ∼ 4BEC. If AB = 6 and BC = 2, compute DE.

Solution

Since 4ADB ∼ 4DBE, we have that AB
DE = DB

BE . Since 4DBE ∼ 4BEC, we have that DE
BC = DB

BE .

Thus, AB
DE = DE

BC , so DE2 = AB ·BC = 12, and DE = 2
√

3 .

13. Three runners, Mario, Max, and Maxwell, run three races. In each race there are no ties, with all
other outcomes equally likely. What is the probability that Mario beats Max in the majority of the
races, Max beats Maxwell in the majority of the races, and Maxwell beats Mario in the majority of
the races?

Solution

Note that none of the three runners can lose two races, since otherwise they would not beat another
runner in the majority of races. Similarly none of the runners can win two races. So, each runner must
win one race and lose one race and thus come in second in another race. This gives two cases for the
set of outcomes of the races, of which only the following works:

Mario beats Max beats Maxwell
Maxwell beats Mario beats Max

Max beats Maxwell beats Mario

So we have 3! = 6 favorable outcomes, out of 3!3 = 216. Thus the answer is 6
216 = 1

36 .

14. A deck of 45 cards contains k cards labeled “k” for k = 1, 2, . . . , 9. Two cards are drawn without
replacement. Compute the probability that they have the same label.

Solution

There are
(
k
2

)
ways to choose two of the same card with label k. There are

(
45
2

)
ways to choose two

cards. Thus the answer is (
1
2

)
+
(
2
2

)
+
(
3
2

)
+ · · ·+

(
9
2

)(
45
2

) =

(
10
3

)(
45
2

) =
4

33

by Hockey-Stick.

15. Kimi has n candies initially. He eats one candy and then arranges his candies into equal piles of 3.
Then he eats one more candy and arranges his candies into equal piles of 5. Then he eats one more
candy and arranges his candies into equal piles of 7. Then he eats one more candy and arranges his
candies into equal piles of 9. Compute the least possible value of n.

Solution

For each of k = 1, 2, 3, 4, we have that 2k + 1 | n − k =⇒ 2k + 1 | 2n − 2k =⇒ 2k + 1 | 2n + 1.
Thus each of 3, 5, 7, 9 divides 2n+ 1. Since n is positive we have 2n+ 1 ≥ lcm(3, 5, 7, 9) = 315. Thus

n ≥ 157 which does work.



16. Triangle ABC has sides of length 10, 12, and x. Suppose that the A-angle bisector and the B-median
are perpendicular. Compute the sum of all possible values of x.

Solution

Let B′ be the reflection of B over the A-angle bisector, and let X be the foot from B to the A-angle
bisector. Note that B′ lies on AC and is also the reflection of B over X. By the givens, the line BXB′

must be the B-median. Thus B′ is the midpoint of AC. Therefore AC = 2AB′ = 2AB. Since neither
of 10 and 12 is twice the other, we must have one of

2 · x = 10

2 · x = 12

2 · 10 = x

2 · 12 = x

This gives x ∈ {5, 6, 20, 24}. However x = 24 does not satisfy the triangle inequality. Thus the answer

is 5 + 6 + 20 = 31 .

17. Nancy has a circular necklace with seven beads (one for each distinct color of the rainbow). She wants
to replace some (possibly none) of them with white beads, but she doesn’t want any white beads to
be next to each other. How many necklaces can she make like this? (If two necklaces can be rotated
or flipped to match each other, they are the same necklace.)

Solution 1

Suppose that instead of a circular necklace, Nancy has a row of k beads. Let the number of rows she
can make (with the same restrictions as in the original problem) be Ak. Note that Ak = Ak−1 +Ak−2,
by splitting into cases based on whether the last bead in the row is white or not. Also note that
A1 = 2 and A2 = 3. Thus the sequence (Ak) is just the Fibonacci numbers. Then we have A4 = 8 and
A6 = 21.

Going back to the original problem, choose an arbitrary bead. If Nancy replaces this bead, she cannot
replace the two adjacent ones, leaving a row of 4 beads. Similarly, if she doesn’t replace this bead, she
is left with a row of 6 beads to color. Thus the answer is 8 + 21 = 29 .

Solution 2

Note that there can be at most 3 white beads used. If no white beads are used, Nancy can make 1
necklace. If one white bead is used, Nancy can make 7 necklaces. If two white beads are used, Nancy
can make

(
7
2

)
− 7 = 14 necklaces (7 necklaces have two adjacent white beads). If three white beads are

used, Nancy can make 7 necklaces (there is only one possible configuration, with 7 rotations). So the

answer is 1 + 7 + 14 + 7 = 29 .

18. A bag has 20 red balls and 19 green balls. Milan draws balls out of the bag until he gets a red ball.
Then he passes the bag to Akash. Akash draws one ball. What is the probability that Akash draws a
red ball?

Solution

Let us work with the
(
39
19

)
possible sequences of red and green balls. We wish to count the number

of such sequences in which the first red ball is followed immediately by the second red ball. This is
equivalent to working with one less red ball and treating the first red ball in any resulting sequence as
two red balls. Thus the answer is (

38
19

)(
39
19

) =
38!20!19!

39!19!19!
=

20

39
.

19. Point C is on a circle with diameter AB. Let M be the midpoint of AC, and D be the point on ray
BC such that DM ⊥ AB. If BC = 20 and AD = 21, compute CD.

Solution 1



Construct a circle ωA centered at A with radius 0 and a circle ωB centered at B with radius BC = 20.
Note that ∠ACB = 90◦, so MC is tangent to ωB . Also MA is tangent to ωA. Since MA2 = MC2,
M has equal power with respect to ωA and ωB . Thus M lies on their radical axis. Now D also
lies on their radical axis, since their radical axis is perpendicular to AB. So D also has equal power
with respect to ωA and ωB . This gives DA2 − 02 = DB2 − 202. So DB2 = 202 + 212 = 292 and
CD = BD −BC = 29− 20 = 9 .

Solution 2

Let CD = x and AM = MC = y. Note the ∠ACB = 90◦ = ∠DCM and ∠BAC = 90◦ − ∠CBA =
∠MDC. Thus 4ABC ∼ 4DMC. Thus

CA

CB
=
CD

CM
=⇒ CA · CM = CD · CB =⇒ 2y2 = 20x.

Additionally, by the Pythagorean Theorem on 4ACD we have x2 + 4y2 = 212. Eliminating y, we
obtain

x2 + 2 · 20x = 212 =⇒ (x+ 20)2 = 202 + 212 = 292 =⇒ x+ 20 = 29 =⇒ x = 9 .

20. How many sequences of A’s, B’s, and C’s of length 2019 have all B’s followed by an A and no C’s
followed by an A?

Solution 1

Let us choose such a sequence backwards. The last letter can be A or C. Note that A can be preceded
by A or B, B can be preceded by A or C, and C can be preceded by A or C. Thus we have 2 choices
for each letter and the answer is 29 = 512 .

Solution 2

Consider all sequences of length 9 composed of A’s and blanks. There are 29 such sequences. Notice
that for every occurrence of a blank in such a sequence, exactly one of B or C can be put in its spot to
satisfy the rules. Namely, if a blank has an A following it, then only B can be put in its place (since
no C’s are followed by A’s). Alternately, if a blank is followed by another blank or is the last term of
the sequence, only a C can be put it it’s place (since all B’s must be followed by A’s). Thus, number
of sequences of A’s, B’s and C’s satisfying the rules is equal to the number of ways we can make a
sequence of A’s and blanks, which is 29 = 512 .

21. Compute the least positive integer n such that

22
2
. .

.
2

︸ ︷︷ ︸
n 2’s

≥ 20192019
2019

. .
.
2019

︸ ︷︷ ︸
2019 2019’s

.

Solution

Note that 22
2

= 16 < 2019. Thus we can increase the value of a tower of 2021 2’s by replacing the top
three 2’s with 2019 and replacing all the other 2’s with 2019’s. So we must have n ≥ 2022.

We claim that n = 2022 works. To see this, we will prove the following lemma.

Lemma. Let x and y be real numbers such that y ≥ 2019 and x ≥ 11y. Then 2x ≥ 11 · 2019y.

Proof. It suffices to show the result when x = 11y. So, we need

211y ≥ 11 · 2019y ⇐⇒
(

2048

2019

)y
≥ 11

Now we have (
2048

2019

)y
≥
(

2048

2019

)2019

=

(
1 +

29

2019

)2019

≥ 1 + 2019 · 29

2019
≥ 11

by the Binomial Theorem, as desired.



Now note that 22
22

= 65536 ≥ 11 · 2019. By repeatedly applying the lemma we obtain

22
2
. .

.
2

︸ ︷︷ ︸
2022 2’s

≥ 11 · 20192019
2019

. .
.
2019

︸ ︷︷ ︸
2019 2019’s

≥ 20192019
2019

. .
.
2019

︸ ︷︷ ︸
2019 2019’s

,

giving an answer of n = 2022 .

22. Compute the number of ordered triples of integers (a, b, c) for which each of

1 ≤ a, b, c ≤ 20

a ≡ b mod c

c ≡ a mod b

b ≡ c mod a

are all true.

Solution

Assume that a ≤ b ≤ c. We will account for permutations of solutions later. Now, since a ≡ b mod c
we must have a = b. Additionally, the other two congruences give us that c ≡ 0 mod a. Thus we have
a = b | c. Note that for a given value of a, b is forced and there are

⌊
20
a

⌋
possible values of c. Summing

this, we have
20∑
a=1

⌊
20

a

⌋
= 20 + 10 + 6 + 5 + 4 + 3 + 2 + 2 + 2 + 2 + 10 · 1 = 66

solutions. Of these, 20 have a = b = c. Thus there are 66 − 20 = 46 solutions with a = b < c.
Accounting for permutations, we obtain an answer of 20 + 3 · 46 = 158 .

23. Compute the ordered pair of nonzero real numbers (p, q) for which the sum of the possible values of
x+ y over solutions to the system

x3 + y3 = p

x2 + y2 = q

is 5.

Solution

Let s = x+ y and notice that

(x+ y)3 = 3(x2 + y2)(x+ y)− 2(x3 + y3).

Rearranging and substituting, we have

s3 − 3qs+ 2p = 0.

Let this cubic in s have (not necessarily distinct) roots u, v, w. Then by Vieta, u + v + w = 0 6= 5.
Thus u, v, w cannot be all distinct, nor can they be all equal. Therefore we may assume w = u 6= v.
Now, recalling the given, we have

2u+ v = 0

u+ v = 5

which gives u = −5, v = 10. Now by Vieta we obtain −3q = u2 +2uv = −75 and −2p = −u2v = −250.

Thus (p, q) = (125, 25) .



24. Compute the least positive integer n such that a2 + b2 = n has exactly 20 integer solutions for (a, b).

Solution

Note that if (a, b) satisfies a2 + b2 = n, then so do

(−a, b), (a,−b), (−a,−b), (b, a), (−b, a), (b,−a), (−b,−a).

Thus we can put solutions to a2 + b2 = n into groups, where a solution (a, b) is in the same group
as each of the related solutions described above. Note that if a and b are distinct nonzero positive
integers, we get 8 distinct solutions in the same group as (a, b). If a = b or a = 0 or b = 0, then we get
4 distinct solutions in the same group as (a, b).

Note that we can have at most one group of 4 solutions, since all solutions of the form (a, 0) will be in
the same group, as will all solutions of the form (a, a). Furthermore it is impossible to have a solution
of the form (a, 0) and a solution of the form (a, a), since no positive integer is both a perfect square
and twice a perfect square. It follows that if there are 20 solutions, then we must have two groups of
8 solutions and one group of 4 solutions.

Since there is a group of 4 solutions, we know that n must be either a perfect square or twice a perfect
square. If n is twice a perfect square, let n = 2k2. Note that for every pair (a, b) such that a2+b2 = 2k2,
a and b must have the same parity. Thus, for each pair (a, b), there is a unique pair of integers (p, q)
such that p− q = a and p+ q = b. Thus, a2 + b2 = 2k2 is equivalent to (p− q)2 + (p+ q)2 = 2k2, which
reduces to p2 + q2 = k2. This means that there are also twenty pairs (p, q) such that p2 + q2 = k2,
which contradicts the minimality of n.

Thus, n is a perfect square. Let n = k2. We get four solutions from (0, k), (k, 0), (−k, 0), and (0,−k).
To get 16 more solutions, we must have that k2 = a2 + b2 = c2 + d2, where a, b, c, d > 0 and the set
{a, b} is different from the set {c, d}. By inspection, we get that 252 = 152 + 202 = 72 + 242, so the

answer is 252 = 625 .

25. Compute the constant term in the expansion of
(
x+ 1

x + y + 1
y

)8
.

Solution 1

Let us choose 4 of the 8 factors and label them with an A, and then again (independently) choose 4 of

the 8 factors and label them with an B. There are
(
8
4

)2
ways to do this. Now, in each factor, choose

x, 1
x , y, or 1

y corresponding to the set of labels {A}, {B}, {}, or {A,B}, respectively.

Suppose that we have k factors with a label of just A. Then we have 4− k factors with a label of just
B, 4 − (4 − k) = k factors with a label of just B, and 4 − k factors with no label. Thus expanding
the chosen terms gives xk · 1

xk · y4−k · 1
y4−k = 1. Since this process is reversible (we may determine the

labels given choices of terms for each factor), the desired constant term is
(
8
4

)2
= 4900 .

Solution 2

Let us directly expand the given expression. To obtain a constant term, we must choose an equal
number of factors of x and 1

x , as well as an equal number of factors of y and 1
y . Suppose that we have

k factors of x. Then we must also have k factors of 1
x . This also means we must have 4− k factors of

both y and 1
y . The number of ways to choose groups of k, k, 4 − k, 4 − k out of 8 can be counted by

first splitting into two groups of 4 and then splitting each group of 4 into k and 4− k. Summing over
the possible values of k, we have that the answer is

4∑
k=0

(
8

4

)(
4

k

)2

=

(
8

4

) 4∑
k=0

(
4

k

)2

=

(
8

4

)
·
(

8

4

)
= 4900 ,

where we have used the fact that the sum of the squares of the 4th row of Pascal’s Triangle is
(
8
4

)
.

26. Two regular tetrahedra are given, with one inside the other and corresponding faces parallel. If the
distances between corresponding faces are

√
2, 2
√

2, 3
√

2, and 4
√

2, and the side length of the larger



tetrahedron is 1.5 times the side length of the smaller one, compute the side length of the smaller
tetrahedron.

Solution

Notice that for any point inside a regular tetrahedron, the sum the distances from that point to the
sides of the tetrahedron is a constant (in particular this constant is three times the volume divided by
the surface area). So, let us translate the smaller tetrahedron so that it is concentric with the larger
one. This will replace each given distance by the average of the given distances, 2.5

√
2.

Next, notice that this distance is the difference between the inradii of the two tetrahedra. Let r be the
smaller inradius. Then the larger inradius is 1.5r. So we have 1.5r − r = 2.5

√
2, which gives r = 5

√
2.

Finally, one can compute that the desired sidelength is
√

24 · r = 20
√

3 .

27. Given positive reals x, y such that (x−
√
x2 − 4)(y −

√
y2 − 4) = 12− 8

√
2, find all possible values of

6xy − x2 − y2.

Solution 1

For
√
x2 − 4 to be defined, we need x ≥ 2. Similarly y ≥ 2. Thus we may substitute x = a + 1

a and
y = b+ 1

b for positive reals a, b ≥ 1. Now

x−
√
x2 − 4 = a+

1

a
−
√
a2 − 2 +

1

a2
= a+

1

a
−

√(
a− 1

a

)2

= a+
1

a
− a+

1

a
=

2

a
.

Similarly, y −
√
y2 − 4 = 2

b . Hence we obtain

2

a
· 2

b
= 12− 8

√
2 =⇒ ab =

1

3− 2
√

2
= 3 + 2

√
2.

Let c = 3− 2
√

2. Note that abc = 1 and c+ 1
c = 6. Then we have

6xy − x2 − y2 =

(
a+

1

a

)(
b+

1

b

)(
c+

1

c

)
−
(
a+

1

a

)2

−
(
b+

1

b

)2

−
(
c+

1

c

)2

+ 62

= abc+
1

abc
+
a

bc
+

b

ca
+

c

ab
+
bc

a
+
ca

b
+
ab

c
− a2 − b2 − c2 − 1

a2
− 1

b2
− 1

c2
− 2− 2− 2 + 36

= 2 + a2 + b2 + c2 +
1

a2
+

1

b2
+

1

c2
− a2 − b2 − c2 − 1

a2
− 1

b2
− 1

c2
+ 30

= 32

Solution 2

Note that

x−
√
x2 − 4 =

4

x+
√
x2 − 4

.

Substituting, we find
4

x+
√
x2 − 4

· 4

y +
√
y2 − 4

= 12− 8
√

2.

We can this rearrange to obtain

(x+
√
x2 − 4)(y +

√
y2 − 4) =

4 · 4
12− 8

√
2

=
4

3− 2
√

2
= 4(3 + 2

√
2) = 12 + 8

√
2.

We now have the following equations:

(x−
√
x2 − 4)(y −

√
y2 − 4) = 12− 8

√
2,

(x+
√
x2 − 4)(y +

√
y2 − 4) = 12 + 8

√
2.



Expanding both equations and adding, we obtain

2xy + 2
√

(x2 − 4)(y2 − 4) = 24.

Therefore, √
(x2 − 4)(y2 − 4) = (12− xy).

Squaring and expanding both sides, we obtain

x2y2 − 4x2 − 4y2 + 16 = 144− 24xy + x2y2.

Cancelling and rearranging, we obtain

24xy − 4x2 − 4y2 = 128.

Therefore,
6xy − x2 − y2 = 32 .

28. [15] Let k = 2019, m = 20192, n = 2019 · 2018. Let S = {(a1, a2, . . . , ak) | a1, a2, . . . , ak ∈ Z≥0, n <
a1 + a2 + · · · + ak ≤ m} be the set of ordered k-tuples of nonnegative integers such that their sum is
greater than n and at most m. Given a k-tuple T = (a1, a2, . . . , ak) ∈ S, let f(T ) = min{a1, a2, . . . , ak}.
Compute ∑

T∈S
f(T ).

(You may express your answer in terms of common functions, but not with summation notation.)

Solution

Note that m = n+ k.

Let A(k, s,M) be the number of k-tuples (a1, a2, . . . , ak) with a given sum s and with ai ≥ M . By
stars and bars on bi = ai −M , we obtain

A(k, s,M) =

(
s− kM + k − 1

k − 1

)
.

Now the number of such k tuples with a minimum value of exactly M is A(k, s,M) − A(k, s,M + 1)
by subtracting the k-tuples where the minimum value is greater than M (and thus at least M + 1).

Next, we can count the desired sum by counting M for each k-tuple T ∈ S with a minimum of M .
Summing over the possible values of s and M , this gives us

n+k∑
s=n+1

∞∑
M=0

M · (A(k, s,M)−A(k, s,M + 1))

Notice that a given term A(k, s,M), with M > 0, appears twice in this sum; once with a coefficient of
+M and once with a coefficient of −(M − 1). Also, we may drop remaining terms with a coefficient of
0. Thus the sum is actually equal to

n+k∑
s=n+1

∞∑
M=1

A(k, s,M) =

n+k∑
s=n+1

∞∑
M=1

(
s− kM + k − 1

k − 1

)
Now, notice that the possible values of s− kM over n+ 1 ≤ s ≤ n+ k and M ≥ 1 are all integers less
than or equal to n + k − k · 1 = n by considering remainders modulo k. Additionally, A(k, s,M) = 0
when s− kM < 0. Letting N = s− kM , the sum reduces to

n∑
N=0

(
n+ k − 1

k − 1

)
=

(
n+ k

k

)

by Hockey-Stick. Substituting the given values, the answer is
(
20192

2019

)
.



29. In 4ABC, AB = 13, BC = 14, and CA = 15. Let ω be a circle centered at O tangent to segment BC
at P and tangent to the circumcircle of ABC at Q on minor arc BC. Suppose that ∠BAP = ∠QAC.
Compute AO2 −OP ·OQ.

Solution 1

Consider an inversion with radius
√

13 · 15 centered at A followed by a reflection over the A-angle
bisector. This swaps B and C, and also swaps line BC with the circumcircle Ω of 4ABC. Since
tangency is preserved, ω maps to a circle tangent to both line BC and Ω. Since ∠BAP = ∠QAC, P
and Q are swapped. But this means that ω is fixed. Thus the power of A with respect to ω must be
13 · 15 = 195 .

Solution 2

Let Ω be the circumcircle of 4ABC, with center O′. Let M be the intersection of line PQ with
major arc BAC. By Archimedes’s Lemma, M is the midpoint of major arc BAC. Let N be the
midpoint of minor arc BC. Let Q′ be the reflection of Q over MN . Notice that Q′ is on Ω. Also
∠BAP = ∠QAC = ∠BAQ′. So A,P,Q′ are collinear. Let R be the intersection of line AP with ω
other than P .

Notice that MN is a diameter of Ω and that MN is parallel to O′P (both are perpendicular to BC).
Now we have

∠POQ = ∠MO′Q = 180◦ − ∠QO′N = 180◦ − 2∠QAN = 180◦ − ∠QAQ′ = 180◦ − ∠QAP.

Thus OPAQ is cyclic. Since OP = OQ, O is the midpoint of minor arc PQ on this circle, which means
AO bisects ∠QAP . Since AN also bisects ∠QAP , A,O,N are collinear.

Next, notice that O lies on the perpendicular bisector of QR and the angle bisector of ∠QAR. Since
O is not the midpoint of arc QR on the circumcircle of QAR, 4QAR must be isosceles. Now

AP 2 −OP ·OQ = Powω A = AP ·AR = AP ·AQ.

As 4QBA is similar to 4CPA, AQ
13 = 15

AP =⇒ AP ·AQ = 13× 15 = 195 .

30. Let P be a polynomial with rational coefficients satisfying P (
√

2 +
√

3 +
√

5) =
√

30. Compute the
minimum possible degree of P .

Solution 1

By taking conjugates, we have

P (ε1
√

2 + ε2
√

3 + ε3
√

5) = ε1ε2ε3
√

30

for each of the 8 choices of ε1, ε2, ε3 = ±1.

Consider the unique polynomial of degree at most 7 satisfying the given conditions. Letting S =
{ε1
√

2 + ε2
√

3 + ε3
√

5 | ε1, ε2, ε3 = ±1}, by Lagrange Interpolation this polynomial is∑
s∈S

P (s)
∏
t∈S
t6=s

x− t
s− t

.

Furthermore, conjugating this polynomial just permutes the terms of the summation and the product.
Thus the polynomial is fixed under conjugation, which means it has rational coefficients. Therefore P
is this polynomial.

To check that P indeed has degree 7, we can check that the x7 coefficient∑
s∈S

P (s)
∏
t∈S
t6=s

1

s− t



of P is nonzero. It suffices to compute one term of this sum, since all the terms are obtained from each
other by conjugation. So, let s =

√
2 +
√

3 +
√

5. We have

P (s)
∏
t∈S
t 6=s

1

s− t
=

√
30

(2
√

2)(2
√

3)(2
√

5)(2
√

2 + 2
√

3)(2
√

3 + 2
√

5)(2
√

5 + 2
√

2)(2
√

2 + 2
√

3 + 2
√

5)
.

This is a rational multiple of

1

(
√

2 +
√

3)(
√

3 +
√

5)(
√

5 +
√

2)(
√

2 +
√

3 +
√

5)
.

Rationalizing the denominator, this is a rational multiple of

(
√

2−
√

3)(
√

3−
√

5)(
√

5−
√

2)(−
√

2 +
√

3 +
√

5)(
√

2−
√

3 +
√

5)(
√

2 +
√

3−
√

5).

Expanding, we obtain

((3− 5)
√

2 + (5− 2)
√

3 + (2− 3)
√

5)((−2 + 3 + 5)
√

2 + (2− 3 + 5)
√

3 + (2 + 3− 5)
√

5− 2
√

30)

When multiplied out, the rational term of this will be

(3− 5)(−2 + 3 + 5)(2) + (5− 2)(−3 + 5 + 2)(3) + (2− 3)(−5 + 2 + 3)(5) = −24 + 36 + 0 = 12 6= 0

Summing conjugates then gives us that the x7 coefficient of P is 8 times a rational multiple of 12,
which is nonzero as desired. Thus the answer is 7 .

Solution 2

Let us consider powers of α =
√

2+
√

3+
√

5 as linear combinations of 1,
√

2,
√

3,
√

5,
√

6,
√

10,
√

15,
√

30.
Notice that in odd powers of α, we only have terms with

√
2,
√

3,
√

5, and
√

30. Furthermore these
terms only appear in odd powers of α. Thus we only need to consider odd powers of α.

Next, notice that by taking conjugates, any polynomial with α as a root also has all 8 elements of
{ε1
√

2 + ε2
√

3 + ε3
√

5 | ε1, ε2, ε3 = ±1} as roots. Thus the polynomial of least degree with α as a
root and with rational coefficients has degree at least 8. This means that 1, α, α2, . . . , α7 are linearly
independent over the rationals (otherwise there would exist a polynomial with α as a root and with
rational coefficients).

Since α, α3, α5, α7 are linearly independent and only have terms with
√

2,
√

3,
√

5, and
√

30, every linear
combination of the latter 4 terms can be expressed as a linear combination of the former 4 terms. In
particular, we can write

√
30 as a linear combination of α, α3, α5, α7.

It remains to check that
√

30 is not a linear combination of α, α3, α5. This can be done by computing
these powers of α. We find that 7 is indeed the answer.


