Stuyvesant Team Contest

	Fall 2019		
1.	[6] Compute the smallest p	positive integer n such that if n students participate in the Stuyvesant Team	
	Contest, they can be split evenly into 1, 2, 3, 4, 5, 6, and 7 teams.		
	Team Name:	Answer:	
2.	[6] ABCD is a trapezoid ha	s area 276 and $AB \parallel CD$. Points M and N are midpoints of segment AD and he area of quadrilateral $DMBN$.	
	Team Name:		
3.		satisfies $ 2019 - r + \sqrt{r - 2020} = r$, compute all possible values of $r - 2019^2$.	
	Team Name:	Answer:	
4. [7] How many distinct 8 digit numbers can be formed by concatenating exactly one of each of $\{2,0,1,9,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2$		numbers can be formed by concatenating exactly one of each of $\{2, 0, 1, 9, 2019\}$?	
	Team Name:	Answer:	
5.	[8] If x and y are positive re-		
		$x + y^2 = 2019$ $x^2 + y^2 = 2109$	
	then compute $x^3 + y^2$		
	Team Name:	Answer:	
6.	[8] Let $f(x) = \frac{x}{\sqrt{1+x^2}}$ and f_n	$(x) = \underbrace{f(f(\dots f(x)\dots))}_{n \text{ times}}, \text{ compute } f_{99}(1).$	
	Team Name:	Answer:	
7.		side-length 2019. Points X, Y , and Z are on segments BC , CA , and AB , $BZ = 673$, compute the radius of the circle passing through X, Y , and Z .	
	Team Name:	Answer:	

8.	[9] A soccer ball is glued together edge-to-edge from 32 polygons, each of which is either a pentagon or a hexagon. Given each pentagon is glued to 5 hexagons and each hexagon is glued to 3 pentagons and 3 hexagons, compute the number of hexagons.		
	Team Name:	Answer:	
9.	[10] Compute the sum of all possible non-negative integers n such that $0! + 1! + \cdots + n!$ is a perfect square. Note: $0! = 1$.		
	Team Name:	Answer:	
10.	[10] The number of teams is N . Submit an integer a between 0 and N , inclusive all submissions and n be the number of submissions greater than A . You will receive	. Let A be the average of	
	Team Name:	Answer:	
11.		at random, and moves to	
	B		
	Team Name:	Answer:	
12.	[11] Let $AB = 20, BC = 29$, and $CA = 21$. Reflect A over BC to get A' . Reflect A and A' , respectively. Find the area of quadrilateral A'	et A' over AB and AC to	
	Team Name:	Answer:	
13.	3. [12] Compute the number of pairs of positive integers (m,n) such that $m,n \leq 30$ and $m + \gcd(m,n) = n + \operatorname{lcm}(m,n)$		
	Team Name:	Answer:	
14.	[12] If a is selected from $\{1, 2,, 10\}$ uniformly randomly and b is independently (of a) selected from $\{-10, -9,, -1\}$ uniformly randomly, compute the probability $a^2 + b$ is a multiple of 3.		
	Team Name:	Answer:	

15. [13] In the diagram below, arcs WX and YZ both have center O with radii 1 and 2. Given $\angle OXY = \angle OWZ = 90^{\circ}$ and points W, O, Y are collinear, compute the area of the shaded region WXYZ.

	Team Name:	Answer:
16.		positive real numbers that form a right triangle. Find p .
	Team Name:	Answer:
17.		$AD \perp BC$, $AB + BD = DC$, and $\angle B = 40^{\circ}$. Compute $\angle C$.
	Team Name:	Answer:
18.		ositive integers x such that $(\sqrt{x} + \sqrt{x + 2019})^2$ is an integer.
	Team Name:	Answer:
19.		$<0< x<\frac{\pi}{2}$. Given $\sin y + \tan^2 x = \sin x + \tan^2 y$ and
	Team Name:	Answer:

20.	$[U_{\mathbf{D}}]$	to 64	l Welcome t	o USAYNO!
40.	\mathbf{P}	\mathbf{u}	VVCICOIIIC (O COLLING.

Instructions: Submit a string of 6 letters corresponding to each question: put T if you think the statement is true, F if you think it is false, and X if you do not wish to answer. You will receive 2^n points for n correct answers, but you will receive 0 if any of the questions you choose to answer is answered incorrectly.

- (1) Define a magic square to be a 3-by-3 square of distinct numbers such that all rows, columns, and the two diagonals diagonal have the same sum. Define a unit fraction as a fraction of the form $\frac{1}{n}$ for a positive integer n. There exists a magic square consisting of only unit fractions.
- (2) A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square only once. If the knight ends on a square that is one knight's move from the beginning square (so that it could tour the board again immediately, following the same path), the tour is closed. There exists a closed knight's tour on a 4×4 chessboard.
- (3) There exists a closed two-dimensional shape with three non-concurrent lines of symmetry.
- (4) Call a function $f: \mathbb{R} \to \mathbb{R}$ goofy if $|f(a) f(b)|^{2019} \le |a b|^{2020}$ for all reals a and b. Then, every goofy function must be a constant function.
- (5) Let \mathcal{S} be the set of positive integers with no two consecutive digits that sum up to 9. The, the sum

$$\sum_{x \in \mathcal{S}} \frac{1}{x}$$

diverges, i.e. for every M, there exist finite subset $\mathcal{T} = \{t_1, t_2, \dots, t_n\} \subset \mathcal{S}$ such that $\sum_{k=1}^n \frac{1}{t_k} \geq M$.

(6) In regular tetrahedron ABCD, if points X and Y are chosen on faces ABC and BCD, then there must exists a triangle with side lengths AY, DX, and XY.

	Team Name:	Answer:
21.	[16] For any positive three digit number, define its formed with exactly one copy of each of its digits. I	Jerry's to be the set of all distinct two digit integers for example, the Jerry's of 669 are $\{66, 96, 69\}$; and the of all positive three digit numbers equal to the sum of and the median of \mathcal{J} .
	Team Name:	Answer:
22.	[16] Let positive integer T_n be the number of ways	to tile a $2 \times n$ grid with <i>L</i> -shaped tiles (with rotations Compute the remainder when T_{2019} is divided by 66.
	Team Name:	Answer:
23.	[17] Compute the number of arithmetic sequence following: for every positive integer n , there exist a	of integers $(a_n)_{n=1}^{\infty}$ with $a_1 = 2019$ that satisfies the positive integer m such that $\sum_{k=1}^{n} a_k = a_m$.
	Team Name:	Answer:

	rotating each circle. Compute the number of dis	stinct arrangements for $n = 2019$ people.	
		Me, Milan and Matthew, Max and Mario and Maxwell is Mario, Matthew and Milan; but not identical to {Me, Milan ell}.	
	Team Name:	Answer:	
25.	T, and the line tangent to the incircle at T inter	7, and $CA = 8$. Segment AI intersects the incircle at point sects the circumcircle of $\triangle ABC$ at P and Q . Let I_B and I_C espectively. A point X is chosen on segment I_BI_C . Compute	
	Team Name:	Answer:	
26.	[18] $n = 2010^3 + 600^3 + 67^6$ is the product of a five-digit prime number. Find the four-digit prime	three-digit prime number, a four-digit prime number, and a me factor of n .	
	Team Name:	Answer:	
27.	[19] Compute $\sum_{n=1}^{\infty}$	$\frac{(-2)^{2^n+n}}{2^{2^{n+1}}-2^{2^n}+1}$	
	Team Name:	Answer:	
28.	[19] 2019 numbers are chosen uniformly at random from the range [0,1]. Given that the largest of the numbers is at least $\frac{1}{5}$ larger than all other numbers, what is the expected value of the largest number?		
	Team Name:	Answer:	
29.		r, incenter, and orthocenter of $\triangle ABC$. Given that $OI =$ e the sum of the inradius and circumradius of $\triangle ABC$.	
	Team Name:	Answer:	
30.	[20] For positive real $y \neq 2$, find the product of	all possible positive real x as a function of y such that	
	$\sqrt{x+4} + \sqrt{y+2} + \sqrt{y+4} + 2 =$	$=\sqrt{\left(\sqrt{x+4}+2\right)\left(\sqrt{y+2}+2\right)\left(\sqrt{y+4}+2\right)}$	
	Team Name:	Answer:	

24. [17] Given n people, they can form a set of non-empty groups such that each person is in exactly one group; in each group of k people, they hold hands to form a single big circle with all k people. We say two such arrangements are identical if one can be obtained from the other by permuting the set of circles and/or