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2. [5] How many non-congruent, non-degenerate triangles have integer side lengths and perimeter less
than 8?

Solution

Let the sides of the triangle be a ≤ b ≤ c. So we must have that a+ b+ c < 7 and a+ b > c. We make
a table to list all of the possible triangles:

a b a+ b c a+ b+ c
1 1 2 1 3
1 2 3 2 5
1 3 4 3 7
2 2 4 2 6
2 2 4 3 7

Thus the answer is 5 .

3. [5] Compute the number of nonnegative integers n such that 3n ≥ n!.

Note: n! is defined as the product of all the positive integers less than or equal to n. An empty
product is equal to 1.

Solution

By computation, we find that n = 0, 1, . . . , 6 all work. However, for n = 7, 3n < n!. Additionally, since
n! grows faster than 3n for n > 3, there are only 7 values of n that work.

4. [6] Let a, b, c be reals such that a+b
c = 1 and b+c

a = 2. Compute c+a
b .

Solution 1

We add 1 to both equations giving us:

a+ b+ c

c
= 2,

a+ b+ c

a
= 3

If we take the reciprocals of both equations and subtract them from 1, we get:

b

a+ b+ c
= 1− c

a+ b+ c
− a

a+ b+ c
= 1− 1

2
− 1

3
=

1

6

We take reciprocals and subtract 1:

c+ a

b
=
a+ b+ c

b
− b

b
= 6− 1 = 5

Solution 2

Let s = a+ b+ c. Then
s− c
c

=
a+ b

c
= 1,

s− a
a

=
b+ c

a
= 2

So, s− c = c, or c = s
2 . Similarly, we find that a = s

3 . So, b = s− a− c = s
6 . Thus

c+ a

b
=

s
2 + s

3
s
6

= 5



5. [6] If a and b are positive integers such that 2a2 = 3b3, compute the minimum possible value of a+ b.

Solution

Note that a must be a multiple of 3 and b must be a multiple of 2. So, let a = 3c and b = 2d, for
positive integers c and d. Substituting into the original equation, we get: 18c2 = 24d3. Dividing by 6,
we get: 3c2 = 4d3. So, c must be a multiple of 2 and d must be a multiple of 3. Let c = 2e and d = 3f ,
for positive integers e and f . Substituting into the previous equation, we get: 12e2 = 108f3. Dividing
by 12, we get e2 = 9f3. Now, e must be a multiple of 3 so we let e = 3g for a positive integer g. This
leads to g2 = f3. To minimize a and b, we minimize f and g. So, let f = g = 1, which gives a = 18
and b = 6. Thus the answer is 18 + 6 = 24 .

6. [6] Three distinct lines are drawn in the plane. One pair forms an angle of 83◦. Another pair forms an
angle of 97◦. The third pair forms an angle of n◦. Compute smallest possible value of n.

Solution

Consider the triangle formed by the three lines. Since the lines are distinct, the triangle is non-
degenerate. Thus all of its angles are positive. One angle of this triangle is either 83◦ or its supplement.
Another angle is either 97◦ or its supplement. The third angle is either n◦ or its supplement. The only
way for the angles to each be positive and add to 180◦ is to have the first two angles be 83◦ and the
supplement of 97◦, which is also 83◦. Thus either n◦ = 180◦ − 2 · 83◦ or 180◦ − n◦ = 180◦ − 2 · 83◦.
Thus, the smallest possible value of n is 14 .

7. [7] How many subsets of the set {1, 2, 4, 8, 16,−1,−2,−4,−8,−16} have a sum of 0?

Note: The empty set has a sum of 0.

Solution

Let S = {1, 2, 4, 8, 16,−1,−2,−4,−8,−16}. For each subset T of {1, 2, 4, 8, 16}, we can take all of
the elements of T and their negatives to get a subset of S with a sum of 0. Additionally, for each
integer from 0 to 31 inclusive there is exactly one way to write it as a sum of elements of such a set
T . This accounts for all possible sums of subsets of {1, 2, 4, 8, 16}. Therefore, once we have chosen
which elements of {1, 2, 4, 8, 16} to include in the subset of S, we are forced to include exactly their
negatives to get a sum of 0. Thus the answer is exactly the number of subsets of {1, 2, 4, 8, 16}, which

is 25 = 32 .

8. [7] How many distinct values does bxc+ dxe take for x in the interval (−2018, 2018)?

Solution

When x is an integer, bxc+dxe = 2x. There are 4035 integers in the interval (−2018, 2018), so this gives
4035 distinct even values for bxc+ dxe. When x is not an integer bxc+ dxe = bxc+ bxc+ 1 = 2bxc+ 1.
For x in the interval (−2018, 2018), bxc can range from −2018 to 2017, with 4036 distinct values. Each
of these values gives a distinct odd value for bxc+ dxe. Thus there is no overlap between the two cases

and the answer is 4035 + 4036 = 8071 .

9. [7] Stan takes a rectangular 24 by 32 sheet of paper and folds one of its corners onto the opposite
corner. Compute the area of the pentagon formed by the folded paper.

Diagram



Solution 1

Let the pentagon be ABCDE as shown. Since ABCDE is the same paper as the original rectangle
with 4ABD covered twice,

[ABCDE] = [DED′C ′]− [ABD]

We have [DED′C ′] = 24 · 32 = 768. Now we compute [ABD].

Note that AD + AE = AD′ + AE = ED′ = 32. Moreover, since 4ADE is a right triangle with AD
as the hypotenuse, we can use the Pythagorean Theorem: AD2 = AE2 + DE2 = AE2 + 242. We
can solve this system of equations to find AD = 25 and AE = 7. Let the altitude from B to AD
intersect AD at H. Since DHBC is a rectangle and by symmetry, BH = CD = AD = 24. This makes
[ABD] = 1

2 · 25 · 24 = 300. Thus the answer is 768− 300 = 468 .

Solution 2

Note that

[ABCDE] = [ABCD] + [AED] = [ABC ′D′] + [AED] =
1

2
[DED′C ′] + [AED]

As in Solution 1, we compute [DED′C ′] = 768 and AE = 7. Then the answer is 1
2 ·768+ 1

2 ·7·24 = 468 .

10. [8] Let d(n) denote the number of positive divisors of n. Compute the largest integer n < 100 such
that

d(d(d(n))) = d(n)

Solution

Note that d(n) ≤ n with equality only when n = 1 or n = 2. So, d(d(d(n))) ≤ d(d(n)) ≤ d(n). Since
d(d(d(n))) = d(n), we must have d(n) = 2 or d(n) = 1. This only occurs when n = 1 or n is prime.

Thus the largest value of n is the largest prime less than 100, which is 97 .

11. [8] Compute the number of triples of positive integers (a, b, c) for which 18! | a | b | c | 20!.

Note: We write m | n if m is a factor of n.

Solution

Let p = a
18! , q = b

a , r = c
b , and s = 20!

c . Then p, q, r, and s are positive integers with

pqrs =
20!

18!
= 19 · 20 = 22 · 5 · 19

For each such choice of p, q, r, and s we get an ordered triple (a, b, c). Thus we just need to count the
number of ordered quadruples of positive integers (elements) with product 22 · 5 · 19. There are 4 ways
to distribute both factors of 2 to the same element, and

(
4
2

)
= 6 ways to distribute the factors of 2 to

different elements. So, we have 4 + 6 = 10 ways to distribute the factors of 2 between the elements.
There are 4 ways to distribute the 5 and 4 ways to distribute the 19 to the elements. Thus the answer
is 10 · 4 · 4 = 160 .



12. [8] In 4ABC, AB = 13, BC = 14, and AC = 15. Points X, Y , and Z are the trisection points of
sides BC, AC, and AB, respectively with X closer to B, Y closer to C, and Z closer to A. Let A′, B′,
and C ′ be the reflections of A, B, and C over X, Y , and Z, respectively. Compute [A′BC ′AB′C].

Note: [· · · ] denotes the area of the polygon in the brackets.

Solution

Note that X is the midpoint of AA′. Thus AX = A′X and the altitudes from A and A′ to BC are
equal. Then the bases and heights of 4ABC and 4A′BC are equal, so their areas are equal. Similarly,
[ABC] = [A′BC] = [AB′C] = [ABC ′]. Now, we have that

[A′BC ′AB′C] = [ABC] + [A′BC] + [AB′C] + [ABC ′] = 4 [ABC] = 4 · 84 = 336

13. [9] Matthew flips 2018 fair coins. Milan flips 2017 fair coins. Compute the probability that Matthew
gets more heads than Milan.

Solution 1

Say that Matthew wins if he gets more heads than Milan. Consider a game where Milan starts with
1
2 of a point, and both players get 1 point for each heads they flip. Matthew will get more points if
and only if he gets more heads than Milan, so this game is equivalent to the original problem. In this
game, both players’ scores are symmetric about 1009, and there cannot be a tie. So, we can pair up

the outcomes where Matthew with the outcomes where he loses. Thus the answer is
1

2
.

Solution 2

Suppose that both Matthew and Milan had 2017 coins. In this case, let p2017 be the probability that
Matthew gets more heads than Milan. Note that 1 − p2017 is the probability that Milan gets at least
as many heads as Matthew, which by symmetry is also the probability that Matthew gets at least as
many heads as Milan.

In the original problem, we consider cases based on Matthew’s first flip. If he gets a heads, then he
needs at least as many heads as Milan in the remaining 2017 flips. If he gets a tails, then he needs
more heads than Milan in the remaining 2017 flips. Each of these cases has probability 1

2 of occurring,

so the answer is 1
2 · (1− p2017) + 1

2 · p2017 =
1

2
.

14. [9] A sequence {an} is defined for positive integers n so that a1 = a2 = 1 and for all n > 2,

an =
an−1 · an−2
an−1 + an−2

Compute a12.

Solution

Taking the reciprocal of both sides of the given equation, we get:

1

an
=

1

an−1
+

1

an−2

Let bn = 1
an

. Then bn = bn−1 + bn−2 and b1 = b2 = 1. So, the sequence {bn} is just the Fibonacci

sequence. We can compute b12 = 144, which gives a12 =
1

144
.

15. [9] In right 4ABC, AB = 1, BC = 4
√

3, AC = 7. A circle is drawn through A and B intersecting
segment AC at point P such that minor arc AB has measure 60◦. Compute CP .

Diagram



Solution

Let the circle intersect BC at Q. Since arc AB has measure 60◦, ∠AQB = 1
2 · 60◦ = 30◦. Also,

∠ABQ = ∠ABC = 90◦. By 30◦ − 60◦ − 90◦ triangle properties, BQ =
√

3. So, CQ = 3
√

3. By Power

of a Point, CA · CP = CB · CQ. So, 7CP = 4
√

3 · 3
√

3 = 36. Thus CP =
36

7
.

16. [10] Solve for all real x that satisfy:

√
x− 3
√
x+ 4
√
x = x2 − x3 + x4

Solution

We rearrange the equation to get:

x4 − x3 + x2 −
√
x+ 3
√
x− 4
√
x = 0

Now, suppose x > 1. Then x4 > x3, x2 >
√
x, and 3

√
x > 4
√
x. So, x4 − x3 + x2 −

√
x+ 3
√
x− 4
√
x > 0,

which is not possible.

Similarly, if 0 < x < 1, then x4 < x3, x2 <
√
x, and 3

√
x < 4
√
x. So, x4− x3 + x2−

√
x+ 3
√
x− 4
√
x < 0,

which is not possible.

Additionally, because of the square root and fourth root, we must have x ≥ 0. Thus the only possible
solutions are x = 0, 1 .

17. [10] Compute the prime factorization of 823 + 1.

Solution

Let x = 9 so that 82 = x2 + 1 and 823 + 1 = (x2 + 1)3 + 1. Factoring a sum of cubes and a difference
of squares, we get:

(x2+1)3+1 = (x2+1+1)((x2+1)2−(x2+1)+1) = (x2+2)((x2+1)2−x2) = (x2+2)(x2+1+x)(x2+1−x)

Substituting in x = 9, we get 823 + 1 = (92 + 2)(92 + 1− 9)(92 + 1 + 9) = 83 · 73 · 91 = 7 · 13 · 73 · 83
(Any order of the prime factors is acceptable).

18. [10] In 4ABC, M and N are the midpoints of AB and AC. AB = 8 and AC = 9. The circumcircle
of 4AMN is tangent to BC at D. Compute AD.

Diagram



Solution 1

We apply Power of a Point to get that BD2 = BM ·BA = 1
2 ·8 ·8. So BD = 8√

2
. Similarly, CD = 9√

2
.

Now we can apply Stewart’s Theorem on 4ABC with cevian AD to find AD. Alternatively, note
that since AB : AC = BD : CD, AD must be an angle bisector. Then we can use the Second Angle
Bisector Theorem to get that

AD2 = AB ·AC −BD · CD = 8 · 9− 8√
2
· 9√

2
= 36

So, AD = 6 .

Solution 2

Consider a homothety (dilation) with scale factor 2 about A. This sends M to B, N to C, and D to a
point D′ on the circumcircle of 4ABC. Additionally, DD′ = AD. By using Power of a Point on both
circles several times, we have:

(DD′ ·DA)2 = (DB ·DC)2 = BD2 · CD2 = (BM ·BA) · (CN · CA)

However, we also have that BM = BA
2 and CN = CA

2 . Thus,

AD4 = (DD′ ·DA)2 = (BM ·BA) · (CN · CA) =
AB2

2
· AC

2

2
=

(
AB ·AC

2

)2

So, AD =
√

AB·AC
2 =

√
8·9
2 = 6 .

Solution 3

Consider the same homothety as in Solution 2. Note that B and C will get sent to points B′ and
C ′ outside the circumcircle of 4ABC such that B′D′C ′ is collinear and tangent to the circumcircle
of 4ABC at D′. Additionally, because scaling preserves parallel lines we have that BC ‖ B′C ′. So,
∠B′D′B = ∠D′BC. By inscribed angles,

∠BAD′ = ∠B′D′B = ∠D′BC = ∠D′AC = ∠DAC

Additionally, ∠AD′B = ∠ACB = ∠ACD. So, 4BAD′ ∼ 4DAC. Therefore, AB
AD′ = AD

AC . Since

AD′ = 2AD, we can solve for AD: AD =
√

AB·AC
2 =

√
8·9
2 = 6 .



19. [11] How many proper divisors of 10! are a product of a perfect square and a perfect cube (not
necessarily distinct).

Solution

Let p be a prime dividing 10!. The exponent of p in a divisor of 13! that is a product of a perfect
square and cube must be of the form 2x+3y, where 2x is the number of times p divides into the square
and 3y is the number of times p divides into a cube (x, y ≥ 0). We note that 2x+ 3y can take on any
positive integer greater than or equal to 2 and zero. Thus, if the exponent of p in 10! is α, there are α
choices for what exponent we can pick, namely, 0, 2, 3, . . . , α. Since the choice of an exponent for one
prime is independent from the choice of another, we simply take the product of the exponents of 10!.
We factor 10! = 28 · 34 · 52 · 7, which gives us an answer of 8 · 4 · 2 · 1 = 64 .

20. [11] Compute the sum of the sum of the digits of all three digit numbers with at least one digit that
is a 7.

Solution

We will find the sum over all three digit numbers and subtract the sum over all three digit numbers with
no digit that is a 7. For the first case, the average value of the first digit is 1+2+3+4+5+6+7+8+9

9 = 5,
and the average value of the second and third digits is 0+1+2+3+4+5+6+7+8+9

10 = 4.5 each. There are
9 · 10 · 10 = 900 three digit numbers. For the second case, the average value of the first digit is
1+2+3+4+5+6+8+9

8 = 19
4 , and the average value of the second and third digits is 0+1+2+3+4+5+6+8+9

9 =
38
9 each. There are 8 · 9 · 9 = 648 three digit numbers with no digit that is a 7. Thus the answer is

900 · (5 + 4.5 + 4.5)− 648 ·
(

19

4
+

38

9
+

38

9

)
= 4050

21. [11] A non-degenerate triangle has sides of length 1
x , 1, and x. Compute the set of possible values for

its area.

Solution

Let θ be the angle opposite the side of length 1. Then the area of the triangle is 1
2 ·x ·

1
x · sin θ = 1

2 sin θ.
So, we just need to find the range of sin θ. By the Law of Cosines,

12 = x2 +

(
1

x

)2

− 2 · x · 1

x
· cos θ

So, using AM-GM,

cos θ =
x2 + 1

x2

2
− 1

2
≥
√
x2 · 1

x2
− 1

2
=

1

2

Since cos θ ≥ 1
2 , we must have θ ≤ 60◦. Additionally, θ > 0◦. So, 0 < sin θ ≤

√
3
2 . So, the answer

should be

(
0,

√
3

4

]
.

We still must check that all values in this interval are attainable. To check this, we find the range of
possible values for x. Without loss of generality, x ≥ 1. Then by the triangle inequality,

1 +
1

x
> x⇔ 1 > x− 1

x
⇔ 1 > x2 +

1

x2
− 2⇔ x2 +

1

x2
< 3

Looking at the equality case, x2 + 1
x2 = 3, gives cos θ = 1 and θ = 0◦. So, any value of θ with

0◦ < θ ≤ 60◦ is attainable.

22. [12] Hanna placed 2018 candies in a circle and labeled them 1, 2, 3, . . . 2018 in order. Kimi eats candy
1, skips candy 2, eats candy 3, and continues going around the circle eating every other candy until he
has eaten all of them. Compute the label of the last candy Kimi eats.

Solution



If there were 2n candies labeled 1 to 2n and Kimi started at candy 1, then the last one he eats would
be candy 2n. So, after Kimi eats 2018 − 1024 = 994 candies, there will be 1024 left and the last one
remaining will be the one he passed after eating his 994th candy. The first 994 candies he eats are
1, 3, 5, . . . , 1987, so the answer is 1988 .

23. [12] In convex quadrilateral ABCD, the diagonals intersect at point P . If tan∠BAC = 1, tan∠DAC =
2, tan∠DCA = 3, and tan∠BCA = 4, compute tan∠BPC.

Solution

We use coordinates. Let A = (0, 0), C = (1, 0), B = (xb, yb), D = (xd,−yd), with xb, yb, xd, yd > 0 and
xb, xd < 1. Dropping perpendiculars from B and D to the x-axis and using right triangle trigonometry,
we get:

yb
xb

= 1,
yd
xd

= 2,
yd

1− xd
= 3,

yb
1− xb

= 4

Cross-multiplying gives a system of linear equations that is solved relatively easily for B = ( 4
5 ,

4
5 ) and

D = ( 3
5 ,−

6
5 ). The answer is the slope of line BPD, which is:

4
5 + 6

5
4
5 −

3
5

= 10

24. [12]
√

1+
√

2+
√

3+ · · ·+
√

30 is a root of a polynomial with integer coefficients and degree n. Compute
the minimum possible value of n.

Solution

Let x =
√

1 +
√

2 +
√

3 + · · · +
√

30. Then if we repeatedly rearrange the terms in this equation and
square both sides until there are no square roots, we will have a polynomial with x as a root. Note
that we only care about the degree of this polynomial, which depends only on the number of times we
square the equation. To eliminate all of the square roots, we will repeat the following steps 10 times,
once for each prime p ≤ 30:

(a) Simplify all square roots, so that each number under a square root is squarefree (not divisible by
a perfect square).

(b) Move all terms containing a square root with a factor of p to one side and all other terms to other
side.

(c) Square both sides of the equation.

When we do these steps, we will eliminate factors of p from under all square roots. So, after 10
repetitions, we will have an integer polynomial with x as a root. The degree will be 210 = 1024 , so
this should be the answer.

Now we must prove that any integer polynomial with x as a root will have degree at least 1024. To
do this we will use the idea of conjugates. We define the conjugate of an expression with respect to a
prime p to be the same expression, but with each factor of

√
p in each term replaced with a factor of

−√p.
Let a be the conjugate of a with respect to p. Then note that we have the following properties, just as
with normal conjugates:

a+ b = a+ b, ab = (a)(b), n = n

where n is an integer. Since an integer polynomial only adds and multiplies the input with itself and
integers, this implies that P (a) = P (a) for an integer polynomial P . This also means that if a is a root
of P then a is a root of P , since P (a) = P (a) = 0 = 0.

In the original problem, let P be a polynomial with x as a root. Then x is also a root, where the
conjugate is with respect to any prime. Taking the conjugate with respect to any subset of the primes
less than or equal to 30 will give us a new number that must be a root of P . Since there are 210 = 1024
subsets of the primes less than or equal to 30, P must have at least 1024 roots, so its degree must be
at least 1024.


