
2017 Stuyvesant Team Contest Solutions
1. [5] Compute:

2 · 4 · 6− 2 · 4− 4 · 6− 6 · 2 + 2 + 4 + 6.

Solution

2 · 4 · 6− 2 · 4− 4 · 6− 6 · 2 + 2 + 4 + 6 = (2− 1)(4− 1)(6− 1) + 1 = 1 · 3 · 5 + 1 = 15 + 1 = 16

2. [5] Compute the least positive integer k such that k is not a multiple of 3 and 10k + 3 is not
prime.

Solution

Testing values of k that are not multiples of 3, we find that 13 is the first value that works,
since 13 · 10 + 3 = 133 = 7 · 19.

3. [5] If a = 8, b = 15, and c = 17, compute:

a+|a−b|+b
2 +

∣∣∣a+|a−b|+b
2 − c

∣∣∣+ c

2

Solution

Note that a+|a−b|+b
2 = max(a, b). Applying this twice, we get that the expression is equal to

max(max(a, b), c). Substituting the values of a, b, and c, we get 17 .

4. [6] In the diagram below, the vertices of the smaller regular hexagon are intersections of the
diagonals of the larger regular hexagon. Compute the ratio of the area of the smaller regular
hexagon to the larger.

Solution
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Construct 36 congruent 30 − 60 − 90 triangles as shown. Let the area of each be K. Then

the areas of the hexagons are 12K and 36K, so the answer is 12K
36K =

1

3
.

5. [6] A random number generator outputs the numbers 6, 3, and 2 with probability 1
2 , 1

3 , and
1
6 , respectively. Compute the average value of the output.

Solution

Expected value is the sum of possible values, each weighted (multiplied) by their probability.

Thus, the answer is 6 · 12 + 3 · 13 + 2 · 16 =
13

3
.

6. [6] Compute the number of paths from A to B along the lattice grid that pass through each
of the 9 intersection points at most once.

A

B

Solution

We do casework on the number of moves in the ‘wrong’ direction (moves up or to the left).
If there are no moves in the wrong direction, there are

(
4
2

)
= 6 paths. If there is exactly one

move in the wrong direction, we trace out possible paths and find that there are 4. If there
are exactly two moves in the wrong direction, we trace out possible paths and find that there
are 2. It is not possible to have more than two moves in the wrong direction, so the answer
is 6 + 4 + 2 = 12 .

7. [7] In equilateral triangle ABC with side length 8, D is the foot of the altitude from A to
BC and E is the foot of the altitude from D to AC. Compute [CDE].

Note: [· · · ] denotes the area of the polygon in the brackets.

Solution

Since ABC is equilateral, D is the midpoint of BC, meaning DC = 4. We note that ∠DAC =
30◦, so 4ADC is a 30− 60− 90 triangle. Since DE is an altitude, ∠CED = 90◦, so CDA is
a 30− 60− 90 triangle. We thus compute EC = 2 and DE = 2

√
3, to find:

[ADE] =
1

2
· EC ·DE =

1

2
· 2 · 2

√
3 = 2

√
3 .

8. [7] Akash, Matthew, and Milan are playing rock-paper-scissors. If each of them randomly
chooses their play, compute the probability that Akash beats Matthew, Matthew beats Milan,
and Milan beats Akash.

Solution
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The total number of possible plays is 3 · 3 · 3 = 27, because Akash, Matthew, and Milan each
have 3 choices. Additionally, once Milan picks his play, there is only one set of plays for
Akash and Matthew to satisfy the condition. Thus, there are 3 sets of plays that satisfy the

condition, and the answer is 3
27 =

1

9
.

9. [7] Compute

(log2 2017)(log3 2016)(log4 2015) · · · (log2015 4)(log2016 3)(log2017 2).

Solution

By change of base formula, logb a = loga a
loga b = 1

loga b . So, (logb a) (loga b) = 1. Applying this

identity repeatedly, all of the terms in the product cancel, giving an answer of 1 .

10. [8] In rectangle ABCD, E is the center and F is the midpoint of segment AE. If BF ⊥ AC
and AF = 1, compute the [ABCD].

Solution

First, compute AC = 2AE = 4AF = 4 and FC = AC −AF = 4− 1 = 3. Now, note that we
have similar triangles 4AFB ∼ 4ABC ∼ 4BFC by AA similarity. So,

AF

AB
=
AB

AC
and

FC

BC
=
BC

AC

This means that

(AB)2 = (AF )(AC) = 4 and (BC)2 = (FC)(AC) = 12

Then the area of the rectangle is (AB)(BC) =
√

4 ·
√

12 = 4
√

3 .

11. [8] Compute the maximum number of regions one circle and three lines can divide the plane
into. (A region can have finite or infinite area).

Solution

The maximum number of regions that they can split the plane into is 7 (this can be seen
by drawing). Now we are going to draw a circle and try to maximize the number of regions
formed. Note that the circle intersects each line at most twice, leading to 6 total points of
intersections between the circle and a line. Note that for each of the 6 pairs of consecutive
intersection points, the arc between them creates at most 1 new region. Thus our answer is
6 + 7 = 13 .
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12. [8] Let Fn denote the Fibonacci sequence, defined as F1 = F2 = 1, and Fn = Fn−1 +Fn−2 for
n ≥ 3. Let s1 be the sum of the positive integer solutions a to the equation Fa = a. Let s2
be the sum of the positive integer solutions b to the equation Fb = b2. Compute Fs1 + Fs2 .

Solution

We list out the first few terms of the Fibonacci sequence and find that F1 = 1, F5 = 5,
F1 = 12, and F12 = 122. Note that for a > 5, Fa > a and for b > 12, Fb > b2. So,
these are the only solutions. Thus s1 = 1 + 5 = 6 and s2 = 1 + 12 = 13. The answer is
F6 + F13 = 8 + 233 = 241 .

13. [9] Compute:
1002 − 2 · 992 + 3 · 982 − 4 · 972 + · · ·+ 99 · 22 − 100 · 12.

Solution

1002 − 2 · 992 + 3 · 982 − 4 · 972 + · · ·+ 99 · 22 − 100 · 12

=1002 − 992 − 992 + 982 + 2 · 982 − 2 · 972 − 2 · 972 + 2 · 962 + 3 · 962 − 3 · 952

− · · ·+ 49 · 42 − 49 · 32 − 49 · 32 + 49 · 22 + 50 · 22 − 50 · 12 − 50 · 12

=(1002 − 992)− (992 − 982) + 2 · (982 − 972)− 2 · (972 − 962) + 3 · (962 − 952)

− · · ·+ 49 · (42 − 32)− 49 · (32 − 22) + 50 · (22 − 12)− 50

=(100 + 99)− (99 + 98) + 2 · (98 + 97)− 2 · (97 + 96) + 3 · (96 + 95)

− · · ·+ 49 · (4 + 3)− 49 · (3 + 2) + 50 · (2 + 1)− 50

=(100− 98) + 2 · (98− 96) + 3 · (96− 94) + · · ·+ 49 · (4− 2) + 50 · 2
=2 + 2 · 2 + 3 · 2 + · · ·+ 49 · 2 + 50 · 2 = 2 · (1 + 2 + 3 + · · ·+ 49 + 50)

=2 · 50 · 51

2
= 50 · 51 = 2550

14. [9] Compute the sum of all positive integers a such that 2a + a2 is either a power of 2 or a
perfect square.

Solution

Checking, small cases for a, we find the solutions 2, 4, and 6. So, the answer should be 12 .
We will show that there are no other solutions, which is a bit more difficult.

Let 2a + a2 = 2k for a positive integer k ≥ a. Testing out a = 1, 2, 3, 4 we find that a = 2, 4
give k = 3, 5 as solutions. If a > 4, 2a > a2. So,

2k = 2a + a2 < 2a + 2a = 2a+1 ≤ 2k

which is a contradiction.

Now suppose 2a + a2 = m2 for a positive integer m. Rearranging gives

2a = m2 − a2 = (m− a)(m+ a)

We split the problem in two cases, a is odd and a is even.

If a is odd, then m is odd as well. Since gcd(x, y) = gcd(x, x− y),

gcd(m− a,m+ a) = gcd(m− a,m+ a− (m− a)) = gcd(m− a, 2a).
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Since the greatest common divisor of m− a and m+ a must divide 2a, it must be a power of
two. Further, because a is odd, the greatest common divisor must be 1 or 2. If a ≥ 5, then
m ≥ 7, producing factors that are relatively prime with 2a and giving a contradiction. a = 3
and a = 1 do not work.

Otherwise, if a is even, we write a = 2b · a1 and m = 2c ·m1, where a1 and m1 are odd. So,

2a = 22cm2
1 − 22ba21

We must then have b = c, because otherwise the greatest power of 2 dividing the left side
would not equal the greatest power of 2 dividing the right side (we are again assuming that
a > 4 so that 2a > a2). Substituting b = c gives:

2a = 22b(m2
1 − a21)

We divide by 22b:
2a−2b = m2

1 − a21,
and we proceed as in the odd case up to the last step. If a1 = 3, then m1 = 5 gives the
solution a = 6. a1 = 1 implies m1 = 3, which does not work. Thus, our only solutions are
a ∈ {2, 4, 6}.

15. [9] Milan rolls a 20 sided die labeled with the numbers 1, 2, 3, ..., 20. Matthew rolls a 17 sided
die labeled 1, 2, ..., 17. Compute the probability Matthew’s roll is greater than Milan’s roll.

Solution

First, if Milan rolls 18, 19 or 20 Matthew is guaranteed to lose. Now we will only consider
cases where Milan rolls a 1, 2, ... 17 (with probability 17

20). Then by symmetry, the probability
Matthew wins is equal to the probability Milan wins. Adding the probability of a draw (both
roll the same number) to these two probabilities gives 1. The probability of them drawing,
both rolling a number from 1 to 17 is 17

172
= 1

17 . Let p be the probability that Matthew wins.
Then we have 2p + 1

17 = 1. So, p = 1
2 ·
(
1− 1

17

)
. Therefore, taking into account the 17

20 , we
have that the answer is:

17

20
·
(

1

2
·
(

1− 1

17

))
=

2

5

16. [10] Compute the least positive integer N such that NN > 1020.

Solution

First, note that 10 < N < 20. So, we try values of N between 10 and 20. Since 210 = 1024 ≈
1000 = 103, we have that

1616 = 264 = (210)6 · 24 ≈ (103)6 · 24 = 16 · 1018 < 100 · 1018 = 1020

So, 16 is too small of a value for N , but it is close. Thus, we expect 17 to be the answer.
This can be checked with the same technique:

1717 > 1617 = 268 = (210)6 · 28 ≈ (103)6 · 28 = 256 · 1018 > 100 · 1018 = 1020

17. [10] Compute the side length of the regular hexagon inscribed in a right triangle with legs√
3 and 2 as shown:
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2

√
3

Solution

Let the side length of the hexagon be s. Extend the top side of the hexagon and use 30−60−90
triangles to obtain the lengths shown:

Now, note that the smaller right triangle at the top is similar to the larger right triangle. So,
the ratios of their sides are equal, and we have:

2√
3

=
2−
√

3s
1
2s+ s

Cross-multiplying, we get that 3s = 2
√

3− 3s, which implies s =

√
3

3
.

18. [10] Compute the sum of all primes p satisfying:

p | 3p + 11p + 19p.

Note: a | b for integers a and b if a is a factor of b.
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Solution

Fermat’s Little Theorem states that ap ≡ a mod p for all integers a and primes p. So, we
have that 3p ≡ 3 mod p, 11p ≡ 11 mod p, and 19p ≡ 19 mod p. This means that p | 3p− 3,
p | 11p − 11, and p | 19p − 19. If p | a and p | b, then p | a− b. So,

p | (3p + 11p + 19p)− (3p − 3)− (11p − 11)− (19p − 19)⇒ p | 3 + 11 + 19⇒ p | 33

The only primes p dividing 33 are 3 and 11. Both of these work because our steps were
reversible. Thus the answer is 3 + 11 = 14 .

19. [11] Let P (x) = x2017 − 2017x− 2017. Let r1, r2, r3, ..., r2017 be the zeros of P . If

T = r20171 + r20172 + r20173 + · · ·+ r20172017,

compute the remainder when T is divided by 1000.

Solution

Note that by the definition of a root, r2017i − 2017ri − 2017 = 0. Rearranging this, we get
r2017i = 2017ri + 2017. Thus,

2017∑
i=1

r2017i = 2017
2017∑
i=1

ri +
2017∑
i=1

2017

However, by Vieta’s formulas,
2017∑
i=1

ri = 0

So, our sum reduces to
2017∑
i=1

2017 = 2017 · 2017 = 4068289

Taking the remainder when dividing this by 1000, and we get 289 .

20. [11] In 4ABC, AC = 20, BC = 17. If cos2A+ cos2B + sin2C = 2, compute [ABC].

Solution

Note that for any θ, cos2 θ = 1− sin2 θ. We write our equation entirely in terms of sines:

sin2C = 2− (cos2A+ cos2B) = 2− ((1− sin2A) + (1− sin2B)) = sin2A+ sin2B.

By the law of sines,
a

sinA
=

b

sinB
=

c

sinC
= k,

for some constant k. We can then write a = k sinA, b = k sinB, c = k sinC. Multiplying the
equation above by k2, we find:

(k sinC)2 = (k sinA)2 + (k sinB)2.

Finally, we substitute a, b, c, giving:
c2 = a2 + b2

Thus, ABC is a right triangle with a right angle at C. Then the area is:

1

2
AC ·BC = 170 .
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21. [11] Compute the least positive integer n such that:⌊n
4

⌋
+
⌊ n

42

⌋
+
⌊ n

43

⌋
+
⌊ n

44

⌋
+ · · · = 1000.

Note: bxc is the greatest integer less than or equal to x.

Solution

First note that
⌊
n
4

⌋
+
⌊

n
42

⌋
+
⌊

n
43

⌋
+
⌊

n
44

⌋
+ · · · ≈ n

4 + n
42

+ n
43

+ n
44

+ · · · =
n
4

1− 1
4

= n
3 , by

the infinite geometric series formula. Since 3000
3 = 1000, n = 3000 is a good place to start.

Plugging in n = 3000 into our expression we get
⌊
3000
4

⌋
+
⌊
3000
42

⌋
+
⌊
3000
43

⌋
+
⌊
3000
44

⌋
+ · · · =

750+187+46+11+2+0+0+ · · · = 996, so we are pretty close, but too low. Going on to the
next multiple of 4, we see that n = 3004 only increments the sum by 1. However, plugging
in n = 3008 gets the sum to exactly 1000, so the answer is 3008 .

22. [12] In Mr. Cocoros’s 5th period calculus class, only 5 students are present. Unfortunately,
all 5 have fallen asleep. To wake them up, Mr. Cocoros plans to throw pieces of chalk at
them. However, due to his bad aim, Mr. Cocoros misses his target half of the time and hits
a random other student. Any student hit by chalk will wake up. If Mr. Cocoros has 5 pieces
of chalk to throw and aims them optimally, compute the probability that he will wake up the
entire class.

Solution

We calculate the probability that Mr. Cocoros wakes up a student on his kth throw, assuming
that he has woken up k−1 students already. He should aim for a student that is asleep. This
gives a probability of 1

2 + 1
2 ·

4−(k−1)
4 , since if he misses there are still 4− (k − 1) students he

could hit by accident to wake one up. Multiplying this from k = 1 to k = 5, we have:

5∏
k=1

1

2
+

1

2
· 4− (k − 1)

4
=

5∏
k=1

1

2
·
(

1 +
5− k

4

)
=

1

25

5∏
k=1

9− k
4

=
8 · 7 · 6 · 5 · 4

25 · 45 =
105

512

23. [12] In quadrilateral ABCD, AB = CD and ∠BAD + ∠CDA = 90◦. If BC = 31 and
[ABCD] = 264, compute AD2.

Solution

We construct squares on AD and BC as shown, giving 4 congruent quadrilaterals by the
conditions in the problem.
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AD2 is the area of the larger square. Thus, the answer is 312 + 4 ∗ 264 = 2017 .

24. [12] An Additive Magic Square (AMS) is a 3 by 3 grid filled with distinct positive integers such
that the sum of each row, column, and diagonal are the same. A Multiplicative Magic Square
(MMS) is a 3 by 3 grid filled with distinct positive integers such that the product of each
row, column, and diagonal are the same. The minimum possible sum of elements of an AMS
is 45. Compute the minimum possible sum of elements of a MMS.

Solution

We claim that the answer is 91 . This can be attained with the following MMS:

2 36 3

9 6 4

12 1 18

We will now show that 91 is the minimum possible value for the sum of the elements of an
MMS. Let P be the common product of each row, column, and diagonal. Let m be the value
in the middle square, and let a1, a2, . . . , a8 be the values in the other squares. Then we claim
that the m3 = P . To prove the claim, notice that, by taking the product of all three rows,
we get

a1a2 . . . a8m = P 3

Additionally, by taking the product of the diagonals, the center row, and the center column,
we get

a1a2 . . . a8m
4 = P 4

Dividing these two equations gives the desired result.
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Now, we will do casework on the number of distinct primes that divide elements of the MMS.

If there is only one prime that divides the elements of the MMS, then all of the elements must
be distinct powers of that prime. The sum is minimized when the prime is 2 and when the
elements are 20, 21, 22, . . . , 28, which gives a sum of 511 > 91.

If there are three or more distinct primes that divide elements of the MMS, they must each
divide P . Since m3 = P , they must also divide m. So m must be at least 2 · 3 · 5 = 30, the
product of the three smallest primes. The product of the elements of the MMS is P 3 = m9.
Then, by AM-GM,

a1 + a2 + · · ·+ a8 +m ≥ 9 9
√
a1 · a2 · · · · · a8 ·m = 9

9
√
m9 = 9m ≥ 9 · 30 = 270 > 91

So, the only case left to consider is when exactly 2 distinct primes divide elements of the
MMS. To minimize the sum, we let the 2 primes be 2 and 3. As before, both 2 an 3 must
divide P , and also m. So, m = 2j · 3k for positive integers j and k. If either j or k is greater
than 1, we have that m is greater than either 22 · 3 = 12 or 2 · 32 = 18. So, m ≥ 12. Then,
we can use AM-GM as before to obtain

a1 + a2 + · · ·+ a8 +m ≥ 9 9
√
a1 · a2 · · · · · a8 ·m = 9

9
√
m9 = 9m ≥ 9 · 12 = 108 > 91

Now we must check that 91 is the minimum possible sum when m = 21 · 31 = 6. In this case,
P = m3 = 23 · 33 = 216. Now, we claim that all of the elements of the MMS are of the form
2j · 3k, with 0 ≤ j, k ≤ 2. Suppose that for some element a, j ≥ 3 (k ≥ 3 is analogous).
Then consider the row, column, or diagonal that contains a and m. The product of the three
entries must be equal to P , but the exponent of 2 in the product of the three elements is at
least 3 + 1 = 4. This is a contradiction. So, all of the elements are of the desired form.

Next, notice that there are only 3 possible values for both j and k. This means that there are
only 3 · 3 = 9 possible values for the elements of the MMS. Since there are 9 elements total,
and since they are distinct, we know that they must be some arrangement of these 9 possible
values. The sum of the elements is then:

20·30+21·30+22·30+20·31+21·31+22·31+20·32+21·32+22·32 = (20+21+22)(30+31+32) = 91

This completes the proof.
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