
Stuyvesant Team Contest: Solutions

Fall 2021

Problem 1. [6] Compute (
1

1 + 2 + 4 + 8 + 16 + 32

)
·
(
1

1
+

1

2
+

1

4
+

1

8
+

1

16
+

1

32

)
.

Proposed by Rishabh Das

Answer. 1
32

Solution. The value is (
1

1 + 2 + 4 + 8 + 16 + 32

)
·
(
32 + 16 + 8 + 4 + 2 + 1

32

)
=

1

32
.

Note that we didn’t actually need to compute 1 + 2 + 4 + 8 + 16 + 32.

Problem 2. [6]

We’re no strangers to love

You know the rules and so do I

A full commitment’s what I’m thinking of

You wouldn’t get this from any other guy

I just wanna tell you how I’m feeling

Gotta make you understand

Never gonna give you up

Never gonna let you down

Never gonna run around and desert you

Never gonna make you cry

Never gonna say goodbye

Never gonna tell a lie and hurt you

Proposed by Rishabh Das, Vidur Jasuja, and Jerry Liang

Answer. 32

Solution. Problem 3 says the product of the answers to problems 1, 2, and 3 is equal to the answer to problem
3. This means that either the answer to problem 3 is 0, or the product of the answers to problems 1 and 2 is 1.
Evidently the answer to problem 3 isn’t 0 (we could also check this by noting that this problem isn’t solvable if it
were), so the answer to this problem is the reciprocal of the answer to problem 1, or 32.
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Problem 3. [7] The answer to this problem is equal to the product of the answers to problems 1, 2,
and 3.

Suppose problem k on NYCTC is worth
⌊
11+k
2

⌋
points, except for problem 20, which is worth 28 points. Find the

sum of all n such that problem n is worth n points.

(Here, ⌊x⌋ is equal to the largest integer that is at most x. For example, ⌊π⌋ = 3 and ⌊13⌋ = 13.)

Proposed by Rishabh Das

Answer. 21

Solution. Problem n is worth either 11+n
2 points are 11+n

2 − 1
2 = 10+n

2 points. Setting n equal to 11+n
2 gives

n = 11, and setting n equal to 10+n
2 gives n = 10. The sum of these two values is 21.

Problem 4. [7] The number A 0 2 0 2 1 is divisible by 7, where A is a digit. What is A?

Proposed by Rishabh Das

Answer. 6

Solution. The number A 0 2 0 2 1 is divisible by 7 if and only if the number A 0 2 is divisible by 7, since all we’re
doing is multiplying this by 1000 and adding 21.

From here we could just test values of A to get that 6 works. Alternatively, adding 28 to this number gives A 3 0
is divisible by 7, so A 3 is divisible by 7, from which it’s easy to see that A = 6.

Problem 5. [8] Square ABCD and line ℓ lie on a plane. Let X and Y be the feet of the perpendiculars from A
and C to line ℓ, respectively. If AX = 8, CY = 6, and XY = 4, compute the area of ABCD.

Proposed by Rishabh Das

Answer. 10

Solution.

A

B

C

D

X Y

8

6

4 ℓ

If we orient ℓ to be parallel to the x-axis, the x-displacement from A to C is 4, while the y-displacement is 8−6 = 2.

This means the length of AC is
√
42 + 22 =

√
20, so the side length of square ABCD is

√
20√
2

=
√
10. Thus, the

area of square ABCD is 10.

If ℓ passes through the square, it’s possible the area of the square is 106. Both 10 and 106 were accepted during
the contest.
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Problem 6. [8] A fair coin is flipped 7 times. What is the probability the product of the number of heads and
the number of tails is a multiple of 3?

Proposed by Rishabh Das

Answer. 43
64

Solution. The only way this product is not a multiple of 3 is if both the number of heads and number of tails
are not multiples of 3. The only way this can happen is if we flip 2 of one of them and 5 of the other.

There is a
(72)
27

= 21
128 probability we flip 2 heads and 5 tails, and similarly a 21

128 probability we flip 2 tails and
5 heads. Overall, there’s a 21

64 probability that the product of the number of heads and number of tails is not a
multiple of three. This makes the answer 1− 21

64 = 43
64 .

Problem 7. [9] Suppose ABCDEFGH is a cube of side length 4, as shown. Suppose M , N , and P are the
midpoints of AB, CG, and HE, respectively. What is the area of △MNP?

A B

CD

E F

G
H

M

N

P

Proposed by Rishabh Das

Answer. 6
√
3

Solution. We can find
PM =

√
PE2 + EA2 +AM2 =

√
22 + 42 + 22 =

√
24.

Similarly, MN = NP =
√
24. Thus, △MNP is equilateral. The area of the triangle is then

(
√
24)2

√
3

4
= 6

√
3.

Remark. We can also note △MNP is equilateral since △ACH and △BGE are both equilateral, and then use
mean geometry to get the midpoints of AB,CG, and EH form an equilateral triangle.

Problem 8. [9] There are 10 lily pads arranged in a circle. Kelvin the frog is currently on a lily pad, and every
minute either jumps 2 lily pads clockwise or 3 lily pads counterclockwise with equal probability. After 5 minutes,
what is the probability Kelvin is back where he started?

Proposed by Rishabh Das

Answer. 1
2

Solution. Modify the given process so that Kelvin always jumps 2 lily pads clockwise, and then either stays in
places or jumps to the lily pad diametrically opposite from him, with equal probability. After 5 minutes, Kelvin
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has jumped two lily pads clockwise 5 times, which is equivalent to doing nothing. Thus, Kelvin lands back where
he started if and only if he jumps diametrically opposite an even number of times. The probability Kelvin does
this is 1

2 , since Kelvin’s last move is the only thing that determines if he ends up where he started or not.

Problem 9. [10] Suppose 225 · 226 + 1 = pq for primes p > q. Compute 2p+ q.

Proposed by Rishabh Das

Answer. 693

Solution 1. Let x = 15. Then our number is

x2(x2 + 1) + 1 = x4 + x2 + 1 = (x2 + 1)2 − x2 = (x2 + x+ 1)(x2 − x+ 1).

Thus, 225. · 226+ 1 = 241 · 211. We may check that these are prime, but these are also given to us by the problem
statement. Thus, p = 241 and q = 211. Then 2p+ q = 482 + 211 = 693.

Solution 2. We may write

225 · 226 + 1 = 226(226− 1) + 1 = 2262 − 225 = 2262 − 152 = (226 + 15)(226− 15) = 241 · 211.

Then we can proceed as in solution 1.

Problem 10. [Up to 10] Pick a rectangle fully contained within the unit square S = [0, 1]× [0, 1] and with sides
parallel to S.

Let T be the number of submissions. Let I be the number of rectangles other teams submit that intersect with
yours (sharing an edge or vertex counts as intersection). Let A be the area of your rectangle. Your score is
⌊cA(T − I − 1)⌋, where c = 10

max (T−I−1)A over all submissions.

Your answer should be submitted in the form (x1, x2, y1, y2), where your rectangle is [x1, x2]×[y1, y2] (in particular,
your rectangle will have vertices (x1, y1), (x1, y2), (x2, y1), and (x2, y2)). Your submission should satisfy 0 ≤ x1 <
x2 ≤ 1 and 0 ≤ y1 < y2 ≤ 1. Invalid submissions will result in 0 points.

(0, 0) (1, 0)

(1, 1)(0, 1)

x1 x2

y1

y2

Proposed by Vidur Jasuja

Answer. N.A. Below are the results, where the first, second, and third best teams are marked in gold, silver,
and bronze, respectively.
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Problem 11. [11] A group of 103 people, including Taylor and Kanye, will form a 5-person team. The captain
of the team (who is a member of the team) is either Taylor or Kanye. If Taylor is the captain, Kanye refuses to
also be on the team. However, if Kanye is the captain of the team, then Taylor is okay with being on the team.
If a team is randomly selected from all possible teams, compute the probability Kanye is on the team.

Proposed by Rishabh Das and Vidur Jasuja

Answer. 51
100

Solution. Kanye can only be on the team if he is the captain, since otherwise Taylor is the captain, and he will
refuse to be on the team.

If Taylor is the captain of the team, there are
(
101
4

)
ways to choose the rest of the team, as we need to choose four

people from the 101 people that are not Taylor or Kanye.

If Kanye is the captain of the team, there are
(
102
4

)
ways to choose the rest of the team, as we need to choose four

people from the 102 people that are not Kanye.

The probability Kanye is on the team is(
102
4

)(
102
4

)
+
(
101
4

) =
102 · 101 · 100 · 99

101 · 100 · 99 · (102 + 98)
=

102

200
=

51

100
.

Problem 12. [11] There is a unique triple of primes (p, q, r) satisfying 2pqr − 5p2 − 5q2 + 5r2 = 0 and p < q.
Find (p, q, r).

Proposed by Vidur Jasuja

Answer. (2, 7, 5)

Solution. One of p, q, r must be 5, so that the expression is a multiple of 5. Furthermore, if all of p, q, r are odd,
then the expression is odd, so one of p, q, r is equal to 2.

If r = 5, then we have

10pq − 5p2 − 5q2 + 125 = 0 =⇒ p2 − 2pq + q2 = 25 =⇒ (p− q)2 = 5.

Then, evidently, p = 2 and q = 7, yielding the triple (2, 7, 5), so we’re done.

As a further note, simple casework on the case p = 5 (and, analogously, q = 5), will yield no solutions.

5



Problem 13. [12] Suppose M and N are the midpoints of sides AB and AC of △ABC. Let line MN intersect
the circumcircle of △ABC at X and Y such that M is between X and N . If XM = 5,MN = 11, and NY = 9,
compute the area of △ABC.

Proposed by Rishabh Das

Answer. 33
√
39

Solution.

A

B C

M N
X Y

5 11 9

By power of a point, XM ·MY = AM · BM = AM2, so AM2 = 5 · (11 + 9) = 100, so AM = 10. This means
AB = 20.

Again by power of a point, Y N ·NX = AN ·BN = AN2, so AN2 = 9 · (11 + 5) = 144, so AN = 12. This means
AC = 24.

Since MN is the A-midline of △ABC, BC = 2 ·MN = 22.

Thus, △ABC has side lengths 20, 22, and 24. The area, by Heron’s formula, is

√
33 · 13 · 11 · 9 = 33

√
39.

Problem 14. [12] How many ways can the cells of a 3 × 3 grid be colored blue and red such that no row or
column has all three of its cells of the same color?

Proposed by Rishabh Das

Answer. 102

Solution. Assume that the majority of the cells are red, and multiply the total we get at the end by 2.

If more than 6 of the cells are red, then one row will be fully red. Thus, either 5 or 6 of the cells will be red.

First assume 6 of the cells are red. Then there are only 3 blue cells. The blue cells must all be on different rows
and columns in order for no row or column to be monochromatic. There are 3 ways to choose where the blue cell
goes in the first row, 2 remaining ways to choose where it goes in the second row, and 1 remaining possibility for
the last row. Thus, there are 3 · 2 · 1 = 6 possibilities in this case.

Now assume 5 of the cells are red. We require two columns to have 2 red cells and the last one to have 1 red
cell. There are 3 ways to choose which columns have 2 red cells. Without loss of generality, assume the first two
columns have 2 red cells. There are 3 ways to choose which red cells in the first column are red; assume the below
configuration.
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There are three cases for the second column. If the two cells are the ones in the first two rows, then the last red
cell is in the bottom right.

The other two cases are symmetric; assume the one below.

Then there are two cases for the last red cell, as the only condition is that it can’t be in the first row.

Thus, this case gives 3 · 3 · (1 + 2 · 2) = 45 possibilities.

Overall, there are 6 + 45 = 51 ways for no row or column to be monochromatic where the majority of cells are
red, so there are 2 · 51 = 102 ways with no restriction.

Problem 15. [13] Let ℓ be the A-angle bisector of triangle ABC. Let the feet from B and C to ℓ be D and E,
respectively. If BD = 12, CE = 24, and DE = 15, find the area of triangle ABC.

Proposed by Jerry Liang

Answer. 360

Solution. Let X be the intersection of ℓ with BC.

A

B C

D

E

X
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Since BD ⊥ AD and CE ⊥ AE, we have that BD ∥ EC. Therefore, △BDX ∼ △CEX. Since BD
CE = 12

24 = 1
2 , we

have DX
EX = 1

2 =⇒ DX = DE
3 = 5 and EX = 2DE

3 = 10.

By the Pythagorean theorem, BX = 13 and XC = 26.

Since ∠BAD = ∠DAC, by AA similarity we have that △BAD ∼ △CAE with ratio BD : CE = 1 : 2. Therefore,
AD = 1

2AE =⇒ AD = DE = 15.

Now we can compute the area of triangle ABC as follows:

[ABC] = [ABX] + [ACX] = [ABD] + [BDX] + [ACE]− [CEX]

=
1

2
· 12 · 15 + 1

2
· 5 · 12 + 1

2
· 24 · 30− 1

2
· 10 · 24 = 90 + 30 + 360− 120 = 360.

Problem 16. [13] Suppose a and b are positive integers satisfying a+ b = 210 and

6 · gcd2(a, b) + lcm2(a, b) = 7ab.

Find the sum of all possible values of |a− b|.

Proposed by Rishabh Das

Answer. 192

Solution. Let a = ga1 and b = gb1, where g = gcd(a, b). Then we have that

6g2 + (ga1b1)
2 = 7g2a1b1 =⇒ 6 + (a1b1)

2 = 7a1b1 =⇒ (a1b1 − 6)(a1b1 − 1) = 0.

If a1b1 = 1, then a1 = b1 =⇒ a = b = 105, which contributes nothing to our answer.

If a1b1 = 6, then either a1 = 6, b1 = 1 (or vice versa - but we only need to consider this case in our final answer),
giving that g = 30 and a = 180, b = 30, or a1 = 3, b1 = 2, giving g = 42 and a = 126, b = 84.

This gives a final answer of 150 + 42 = 192.

Problem 17. [14] Compute
49∑
k=1

√
k −

√
k2 − 1.

Proposed by Rishabh Das

Answer. 5 + 3
√
2

Solution. Let
√

k −
√
k2 − 1 =

√
a−

√
b, for some a, b. Squaring both sides gives us

k −
√

k2 − 1 = (a+ b)− 2
√
ab.

In an attempt to make a and b both nice, we try a+ b = k and 2
√
ab =

√
k2 − 1. Squaring both sides of this latter

equation and simplifying, ab = k2−1
4 . Thus, we are looking to solve a + b = k and ab = k2−1

4 . A bit of trial and

error results in
{
k−1
2 , k+1

2

}
as a solution, so√

k −
√

k2 − 1 =

√
k + 1

2
−
√

k − 1

2
.

This means we want to compute
49∑
k=1

(√
k + 1

2
−
√

k − 1

2

)
.
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Writing the terms out, we get(√
2

2
−
√

0

2

)
+

(√
3

2
−
√

1

2

)
+

(√
4

2
−
√

2

2

)
+

(√
5

2
−
√

3

2

)
+ · · ·+

(√
49

2
−
√

47

2

)
+

(√
50

2
−
√

48

2

)
.

Nearly every term cancels, and we’re left with√
50

2
+

√
49

2
−
√

1

2
−
√

0

2
= 5 +

7√
2
− 1√

2
= 5 +

6√
2
= 5 + 3

√
2.

Problem 18. [14] Triangle ABC has perimeter 5. If ∠BAC = 60◦ and AB3 +AC3 = 12, compute AB ·AC.

Proposed by Rishabh Das

Answer. 5
3

Solution. Let a = BC, b = CA, and c = AB. Then by the Law of Cosines, a2 = b2 − bc + c2. Additionally, we
are given b3 + c3 = 12. Factoring this gives

b3 + c3 = 12 =⇒ (b+ c)(b2 − bc+ c2) = 12 =⇒ (b+ c)(a2) = 12 =⇒ (5− a)(a2) = 12,

where we use the fact that a+ b+ c = 5. We can guess a = 2 is a root of this cubic relatively easily; if we wanted
to, we could divide this cubic by a− 2 and see the other two roots are either negative, or greater than 2.5, which
can’t happen by the triangle inequality, so a = 2 is the only possibly value.

Now b+ c = 3 and b2 − bc+ c2 = 4. Squaring the first equation and subtracting the two gives 3bc = 32 − 4 =⇒
bc = 5

3 .

Problem 19. [15] If a, b, and c are positive reals that are not all the same satisfying

a2 + b2 + c = b2 + c2 + a = c2 + a2 + b,

then find the maximum possible value of abc.

Proposed by Rishabh Das

Answer. 4
27

Solution. Just looking at the first two expressions,

a2 + c = c2 + a =⇒ a2 − c2 = a− c.

This means either a− c = 0 or a+ c = 1. Similarly, either b = c or b+ c = 1 and either a = b or a+ b = 1.

We know that a, b, and c are not all the same. Thus, without loss of generality assume a + b = 1. Then either
c = a or c = 1− a = b. Thus, no matter what, two of a, b, and c will be the same, and the last one will be 1 minus
this common value.

Our numbers are x, x, and 1− x in some order, and we want to maximize x2(1− x) for positive x. We can finish
by taking a derivative and setting it equal to 0, but we can use AM-GM for a non-calculus solution:

x2(1− x) = 4 · x
2
· x
2
· (1− x) ≤ 4

( x
2 + x

2 + (1− x)

3

)3

=
4

27
.

Equality holds when x
2 = x

2 = 1− x, or when x = 2
3 , so the maximum value of x2(1− x) is 4

27 .
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Problem 20. [Up to 28] Welcome to USAYNO!

Instructions: Submit a string of 6 letters corresponding to each statement: put T if you think the statement is
true, F if you think it is false, and X if you do not wish to answer. You will receive (n+1)(n+2)

2 points for n correct
answers, but you will receive zero points if any of the questions you choose to answer are incorrect. Note that this
means if you submit “XXXXXX” you will get one point.

(1) There exists a perfect square which is equal to the sum of the squares of five consecutive positive integers.

(2) A square ABCD is completely covered by finitely many (possibly overlapping) disks. The sum of the radii of
these disks must be at least AC

2 .

(3) Suppose a, b, c, d, and e are integers satisfying

a+ b = c+ d+ e,

a2 + b2 = c2 + d2 + e2, and

a3 + b3 = c3 + d3 + e3.

Then abcde = 0.

(4) There exists an infinite set of positive integers S such that for any positive integers a and b, neither of which
divides the other, at least one, but not all, of the integers gcd(a, b), a, b, lcm(a, b) are elements of S.

(5) A rectangle has integer side lengths. We tile the rectangle with squares greedily; this means we first draw the
largest possible square inside this rectangle (and if multiple exist, pick the top-left most one), which results in a
smaller rectangle. We then repeat the process, tiling the rectangle with squares.

An example of a greedy tiling of a 3× 5 rectangle is shown below.

This greedy method is the optimal way to tile any starting rectangle with squares (i.e. it uses the least number of
squares out of any tiling of the rectangle with squares).

(6) Suppose O,H, and I are the circumcenter, orthocenter, and incenter of the acute, scalene △ABC. The
circumcircle of △OIH must pass through an even number of vertices of △ABC.

Proposed by Rishabh Das and Vidur Jasuja

Answer. FTTFFT

Solution. The answer is FTTFFT.

(1) Of the five consecutive positive integers, let the middle one be a. Then the sum is

(a− 2)2 + (a− 1)2 + a2 + (a+ 1)2 + (a+ 2)2 = 5a2 + 10 = 5(a2 + 2).

This is clearly a multiple of 5, so in order for the number to be a square we need it to be a multiple of 25. Thus,
5 | a2 + 2. However, we can check that a2 ≡ 3 (mod 5) has no solutions, so this number cannot be a square.

(2) Suppose Ω1,Ω2, . . . ,Ωk are the circles that intersect AC, and have radius r1, r2, . . . , rk, respectively. Then

AC ≤
k∑

i=1

[Length of intersection of AC with Ωi] ≤
k∑

i=1

2 · [Radius of Ωi] =

k∑
i=1

2ri,

which is at most 2 times the sum of the radii of all the circles. Thus, the sum of the radii of all the circles is at
least AC

2 .
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(3) Let t = 0. Then

a+ b+ t = c+ d+ e,

a2 + b2 + t2 = c2 + d2 + e2, and

a3 + b3 + t3 = c3 + d3 + e3.

This means a, b, and t are the roots of a cubic , and c, d, and e are also roots of the same cubic. Thus, {a, b, t} =
{c, d, e}. This means that one of c, d, and e is equal to t = 0, so abcde = 0.

(4) The idea is that we only need to consider integers of the form 2a3b. If we plot all such points in the coordinate
plane, where (a, b) represents 2a3b, and color each point one of two colors, then the problem is equivalent to
saying there’s no monochromatic rectangle. This falls to a pigeonhole argument. Consider some arbitrary 3 × 7
intersection of three horizontal and seven vertical lines. At least four of these vertical lines will have the same
majority color. Among these four vertical lines, it’s impossible that we avoid a monochromatic rectangle; at least
one pair of the lines will have two points of the majority color on the same horizontal lines. Therefore, the claim
is false.

(5) The key is to force the greedy method to have a bunch of tiny squares; we can do this by letting one of the
dimensions be 1 more than the other one. We can check the greedy method on 5 × 6 rectangle gives 6 squares,
while we can actually tile it with only 5 squares.

(6) Since I is inside △ABC, we know (OIH) cannot be the circumcircle of △ABC. Thus, it’s sufficient to check
if (OIH) passes through exactly one vertex of △ABC.

Suppose A is on (OIH), but B and C aren’t. Since O and H are isogonal conjugates, ∠OAI = ∠HAI. Thus,
HI = IO. But since ∠OBI = ∠HBI and ∠OCI = ∠HCI, both B and C either lie on (OIH) or lie on the
perpendicular bisector of OH. Since we have assumed both B and C are not on (OIH), they must both lie on the
perpendicular bisector of OH. However, since △ABC is acute, both O and H lie inside △ABC, a contradiction.
(We also could’ve said I lies on BC as IO = IH, which is a contradiction.)

Problem 21. [16] Akash and Kimi are playing a game. Akash thinks of a polynomial P (x) of degree 2021 with
nonnegative integer coefficients, all at most 2021. A move is when Kimi gives Akash a real number r, and Akash
tells Kimi P (r). At most how many moves must Kimi make to determine the polynomial P (x)?

Proposed by Rishabh Das

Answer. 1

Solution. We claim Kimi can win in one move; he clearly can’t win in zero moves, so we just need to find a valid
strategy for Kimi.

If Kimi gives Akash 2022, Akash will give back the number when the coefficients are concatenated together, in
base 2022. Kimi can then find each digit in base 2022, and thus recover the polynomial. Thus, this strategy works,
and the answer is 1.

Remark. In fact, if Kimi gives Akash 10000, then Akash will tell Kimi exactly the coefficients of P , with some 0s
in between them.
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There exist other strategies. For example, if Kimi gives Akash 2022
√
3, Kimi wins in one move. (This strategy

doesn’t use any restriction on the coefficients besides them being rational!)

Problem 22. [16] Let a, b, c, d be positive real numbers such that

a2 + b2 = 1,

b2 + c2 = 16,

c2 + d2 = 64, and

ac = bd.

Compute ab+ bc+ cd+ da.

Proposed by Vidur Jasuja

Answer. 36

Solution 1. The sum of the first and third equations, minus the second one, gives d2 + a2 = 49. Construct four
segments with a common endpoint, O, OA, OB, OC, and OD such that OA and OC are both perpendicular to
OB and OD, and such that OA = a, OB = b, OC = c, and OD = d.

A

B

C

D

Oa

b

c

d

Four of our equations give AB = 1, BC = 4, CD = 8, and DA = 7. The equation we haven’t used yet, ac = bd
means that ABCD is cyclic by the converse of the power of a point. Then we have

ab+ bc+ cd+ da = (a+ c)(b+ d) = 1 · 8 + 4 · 7 = 36

by Ptolemy’s Theorem on cyclic quadrilateral ABCD.

Solution 2. The fourth equation tells us d = ac
b . Plugging this into the third one, we get

c2 +
(ac
b

)2
= 64 =⇒ c2

b2
· (a2 + b2) = 64.

Using the first equation makes this c2

b2
= 64, or c

b = 8. Then by the second equation,

b2 + c2 = b2 + (8b)2 = 65b2 = 16 =⇒ b =
4√
65

.

This then gives c = 32√
65
. The first equation now gives a = 7√

65
. Finally, the fourth equation gives d = 56√

65
. Now

we can compute

ab+ bc+ cd+ da = (a+ c)(b+ d) =

(
7 + 32√

65

)(
4 + 56√

65

)
=

39 · 60
65

= 36.
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Problem 23. [17] A positive integer n is similvisible if it has only single-digit prime factors and 4n, 5n, 6n, and 7n
have the same number of positive integer divisors. Compute the sum of the reciprocals of all similvisible integers.

Proposed by Vidur Jasuja

Answer. 70
1259

Solution. We may write n = 2a3b5c7d. The number of divisors of 4n is

(a+ 3)(b+ 1)(c+ 1)(d+ 1),

the number of divisors of 5n is
(a+ 1)(b+ 1)(c+ 2)(d+ 1),

the number of divisors of 6n is
(a+ 2)(b+ 2)(c+ 1)(d+ 1),

and the number of divisors of 7n is
(a+ 1)(b+ 1)(c+ 1)(d+ 2).

Comparing the second and fourth equations gives that c = d. Comparing the first and second gives that (a +
3)(c+ 1) = (a+ 1)(c+ 2), which gives that a = 2c+ 1. Finally, comparing the first and third equation gives that
(a+ 3)(b+ 1) = (a+ 2)(b+ 2), so b = a+ 1.

This means that all similvisible numbers are of the form

22c+132c+25c7c = 18 · 1260c

So, we want to compute
∞∑
n=0

1

18
·
(

1

1260

)c

=
1
18

1− 1
1260

=
70

1259
.

Problem 24. [17] Suppose (σ1, σ2, . . . , σ2021) is a permutation of (1, 2, 3, . . . , 2021). Suppose, across all such
permutations, m is the minimum value of the expression

|σ2 − σ1|+ |σ3 − σ2|+ · · ·+ |σ2021 − σ2020|+ |σ1 − σ2021|

and suppose n is the number of such permutations such that the given expression is equal to m. Compute n.

Proposed by Vidur Jasuja

Answer. 2021 · 22019

Solution. We claim that m = 4040. To prove this, we will make use of the fact that |a|+ |b| ≥ |a+ b|, and that
equality holds when a and b have the same sign. Suppose, without loss of generality, that σ1 = 1. Suppose that
σk = 2021, for some k. Then, we know that

|σ2 − σ1|+ |σ3 − σ2|+ · · ·+ |σk − σk−1| ≥ |σk − σ1| = 2020

and

|σk+1 − σk|+ |σk+2 − σk+1|+ · · ·+ |σ1 − σ2021| ≥ |σ1 − σk| = 2020.

Summing these two inequalities gives the desired bound of 4040. This will be achieved when all terms in each
inequality have the same sign. That is, the permutation must increase from σ1 = 1 to σk = 2021, and then
decrease in the other part of the permutation.
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To count this, note that for each integer from 2 to 2020, we can put it in either the increasing or decreasing part
of the permutation, and once we’re done, the permutation is fixed. So there are 22019 ways to place these integers.

Finally, we must multiply by 2021 to account for where we place 1, as it can go anywhere, rather than just σ1.
This yields the final answer of 2021 · 22019.

Problem 25. [18] Let triangle ABC be such that AB = 7 and AC = 8. There exists a point D on segment BC
such that AD = 6 and the inradius of triangle ABD is equal to the inradius of triangle ACD. Find BC.

Proposed by Rishabh Das and Vidur Jasuja

Answer. 9

Solution.

A

B CD

I1 I2

7 86

The inradius of △ABD is equal to
[ABD]

sABD
,

and the inradius of △ACD is equal to
[ACD]

sACD
,

where [•] denotes the area of a polygon and s• is the semiperimeter of a polygon. We need these two values to be
equal, so

[ABD]

[ACD]
=

sABD

sACD
.

Triangles ABD and ACD share the same altitude from A, so the ratio of their areas is the ratio of their bases,
which is just BD

CD . Thus,

[ABD]

[ACD]
=

BD

CD
=

sABD

sACD
=

6+7+BD
2

6+8+CD
2

=
13 +BD

14 + CD
.

By the Baseball Theorem, we can subtract BD from the numerator of the fraction on the right and CD from the
denominator on the right, so this common value is just 13

14 . Let BD = 13x and CD = 14x.

By Stewart’s theorem, we have

13x · 14x · 27x+ 62 · 27x = 72 · 14x+ 82 · 13x
13 · 14 · 27 · x2 = 64 · 13 + 49 · 14− 36 · 27
13 · 14 · 27 · x2 = 832 + 686− 972 = 546

27 · x2 = 3

x =
1

3
.

14



Now BC = 27x = 27 · 1
3 = 9.

Problem 26. [18] Let m = 24 · 34. Suppose k is a randomly selected integer from 1 to m, inclusive. Let ℓ be
the expected value of log10(gcd(k,m)). Find the number of not necessarily distinct prime factors of 10ℓm. (For
example, 12 = 22 · 3 has 3 not necessarily distinct prime factors.)

Proposed by Paul Gutkovich

Answer. 1855

Solution. By definition, we have

ℓ =
1

m

m∑
k=1

log10(gcd(k,m)) =
1

m
log10

(
m∏
k=1

gcd(k,m)

)
.

Then 10ℓm =
m∏
k=1

gcd(k,m), so we just need to compute this.

Note that gcd(k, 24) · gcd(k, 34) = gcd(k, 24 · 34) = gcd(k,m), so we can rewrite our product as

24·34∏
k=1

gcd(k, 24) · gcd(k, 34) =

24·34∏
k=1

gcd(k, 24)

 ·

24·34∏
k=1

gcd(k, 34)

 =

 24∏
k=1

gcd(k, 24)

34

·

 34∏
k=1

gcd(k, 34)

24

,

as k ranges over the residues mod 24 = 16 exactly 34 = 81 times, and vice versa. We can compute
24∏
k=1

gcd(k, 24) =

18 · 24 · 42 · 81 · 161 = 215 and
34∏
k=1

gcd(k, 34) = 154 · 318 · 96 · 272 · 811 = 340. Thus, our final number is equal to

215·3
4
340·2

4
= 212153640. This means the final answer is 1215 + 640 = 1855.

Problem 27. [19] Suppose c is a real number such that when the roots of x3 − 3x2 + 12x+ c are plotted in the
complex plane, they form a non-degenerate triangle with orthocenter at the origin. Compute c.

Proposed by Vidur Jasuja

Answer. 260

Solution. Evidently, our triangle is symmetric about the real axis, by the conjugate root theorem. It will have
one vertex A on the axis, and two more vertices not on the axis, its complex roots B and C.

Let D = d be the foot from A to BC. Then we can write A = d+ a, B = d+ bi, C = d− bi, for some reals a and
b. Now, since AC ⊥ BH, we have that a + bi and d + bi are perpendicular, so then their quotient is imaginary.
Since

a+ bi

d+ bi
=

(a+ bi)(d− bi)

d2 + b2
=

(ad+ b2) + (db− ab)i

d2 + b2

has real part zero, we find that ad = −b2.

Now, we will apply Vieta’s formulas. We have that

(d+ a) + (d+ bi) + (d− bi) = 3d+ a = 3

and

(d+ a)(d+ bi) + (d+ a)(d− bi) + (d+ bi)(d− bi) = 2d2 + 2ad+ d2 + b2 = 3d2 + ad = 12.
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Dividing this equation by the first one, we have d = 4, so a = −9. Then, our answer is

−(d+ a)(d+ bi)(d− bi) = −(d+ a)(d2 + b2) = −(d+ a)(d2 − ad) = −(−5) · 52 = 260.

Problem 28. [19] Alex writes the ordered pair (1, 0) on a chalkboard. Every minute, he randomly and uniformly
chooses two integers c and d, between 1 and 5, inclusive. Then, if at that time he has the ordered pair (a, b) on
the board, he erases it and writes the ordered pair (ac+ bd, ad+ bc) on the board. Find the expected number of
minutes it will take for both of the numbers in his ordered pair to be divisible by 5.

Proposed by Vidur Jasuja

Answer. 65
9

Solution 1. The crux of this problem rests on considering the sum and difference of the two numbers of the
board. Both numbers on the board will be multiples of 5 iff their sum and difference are multiples of 5. That is,
ac+ bd+ ad+ bc = (a+ b)(c+ d), and ac+ bd− ad− bc = (a− b)(c− d), are multiples of 5. This means that when
we are done, we must have selected at least one pair (c, d) at some point with sum a multiple of 5 and one with
difference a multiple of 5. Note that with (5, 5) we achieve both of these, and are thus instantly done.

To proceed, we present two approaches. The first is using states. Let E0 denote the expected number of minutes
that it will take Alex in total, and let E1 denote the expected number of minutes it will take Alex if he has at
some point selected a pair with sum a multiple of 5 but not difference, or vice versa (note that this is allowed by
symmetry). Then

E0 =
16

25
(E0 + 1) +

8

25
(E1 + 1) +

1

25
(1),

and

E1 =
4

5
(E1 + 1) +

1

5
(1) =⇒ 1

5
E1 = 1 =⇒ E1 = 5.

Plugging this into the first equation gives

E0 =
16

25
E0 +

65

25
=⇒ E0 =

65

9
.

Solution 2. We present an alternate finish to the above one. We require the same initial observations. Let X be
a random variable that is equal to the number of minutes until both numbers in the ordered pair are divisible by
5. We use the fact that if X only takes on nonnegative integer values, then

E[X] =
∞∑
k=1

kProb(X = k) =
∞∑
k=1

Prob(X ≥ k).

(Note that if X didn’t take only nonnegative integer values, we would have to integrate Prob(X ≥ k), but a
similar method would work.) We can compute this with PIE: each of the two numbers in the ordered pair has

probability
(
4
5

)k−1
of not being a multiple of 5 after k − 1 moves, and they have probability

(
16
25

)k−1
of both not

being multiples of 5 after k − 1 moves. Thus, the probability X ≥ k is

2

(
4

5

)k−1

−
(
16

25

)k−1

.

Summing over all k ≥ 1, we get

E[X] =

∞∑
k=1

2

(
4

5

)k−1

−
(
16

25

)k−1

= 2 · 1

1− 4/5
− 1

1− 16/25
= 10− 25

9
=

65

9
.
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During the contest, the problem mistakenly had the pair (1, 1) rather than (1, 0). This meant the difference was
always divisible by 5, making the answer just 5. This was marked correct during the contest.

Problem 29. [20] Stan the Cat is a 2021-dimensional creature, playing with 2021-dimensional hyperspherical
marbles Ω1,Ω2, . . . ,Ω2023. The radii of Ω1,Ω2, . . . ,Ω2021 are 1, while the radii of Ω2022 and Ω2023 are r. Stan then
arranges his marbles such that they are all pairwise externally tangent. Find r.

Proposed by Rishabh Das

Answer. 2019
4042

Solution 1. We solve the problem for general n ≥ 3, rather than 2021. (It may be helpful to visualize the diagram
for n = 3.)

Scale the problem down by
√
2; we will multiply our final radius by

√
2 at the end. Then the radius of Ωi is

√
2
2

for 1 ≤ i ≤ n. Let the center of Ωi be Oi.

Place Oi at the point where all coordinates are 0, except for the ith one, which is a 1, for 1 ≤ i ≤ n. Then On+1

and On+2 have centers that have coordinates that are all equal. This means that both of them are tangent to the

hyperplane x1 + x2 + · · · + xn = 1 at
(
1
n ,

1
n ,

1
n , . . . ,

1
n

)
= X. Now On+1O1 =

√
2
2 + r, XOn+1 = r, and O1X is the

distance from (1, 0, 0, . . . , 0) to
(
1
n ,

1
n ,

1
n , . . . ,

1
n

)
, which is√

(n− 1)

(
1

n

)2

+

(
n− 1

n

)2

=

√
(n− 1)n

n2
=

√
n− 1

n
.

We also have △O1On+1X is a right triangle with right angle at X, so by the Pythagorean Theorem,

XO2
1 +XO2

n+1 = O1O
2
n+1 =⇒ n− 1

n
+ r2 =

(
r +

√
2

2

)2

=⇒ r
√
2 =

n− 1

n
− 1

2
=

n− 2

2n
.

Since we’re looking for the radius of Ωn+1 scaled up by
√
2, the final radius is r

√
2 = n−2

2n .

With n = 2021, the answer is 2019
4042 .

Solution 2. Set up the coordinate plane similar to before. Perform an inversion about the n-dimensional
hypersphere centered at X fixing Ωi for 1 ≤ i ≤ n. The radius of this inversion is√

XO2
1 − [radius of Ω1]2 =

√
XO2

1 −
1

2
.

The point diametrically across from X on Ωn+1 maps to the foot of X to a hyperplane tangent to Ωi for 1 ≤ i ≤ n.

The distance from X to this point is just equal to the radius of Ωi for 1 ≤ i ≤ n, which is
√
2
2 . Thus,

n− 2

2n
= (2r) ·

√
2

2
= r

√
2,

so the final answer is n−2
2n .

Problem 30. [20] A 32× 32 grid has the middle 28× 28 grid cut out, forming a “donut” of width 2. From this
donut, a subset of cells of size m is called m-cool if they can be labelled s1, s2, . . . , sm such that si and sj share
exactly one side if and only if i− j ≡ ±1 (mod m). Let M be the maximum positive integer such than an M -cool
set exists, and suppose there are N distinct M -cool sets. Compute N .

The green cells below are an example of a 20-cool set on a smaller donut (a 2× 2 removed from a 6× 6).
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s1

s2 s3 s4

s5 s6 s7

s8

s9

s10s11

s12s13s14s15

s16s17

s18

s19

s20

Proposed by Rishabh Das

Answer. 51527

Solution. First, we claim M = 180. Call a square in our subset green and other cells red (as in our above
example).

Every 2× 2 square can contain at most 3 green cells. Suppose a 2× 2 square had 4 green cells. Then two of them
in opposite corners are both adjacent to the other two, which contradicts the “if and only if” portion. Thus, after
partitioning the donut into 322−282

4 = 60·4
4 = 60 2× 2 squares, we see there are at most 60 · 3 = 180 green cells.

As a consequence of this equality case, when we partition the donut into 2×2 squares, all of them will have exactly
3 of the green cells, and one red cell. We will perform casework on the 4 corner 2× 2 squares.

In each of the four corners, label the cells as follows.

A A

A A

B B

B B

C

C

C

C

C

C

C

C

We claim that the cells labeled C cannot be red. If they were, then a cell labeled A would only be adjacent to one
green cell, a contradiction. Thus, these corner 2× 2 will have either A or B as their red cell.

Note that once we have filled in which cell is red in the corners, the four “edge” parts act independently of each
other. Thus, we will look at two adjacent corners, and do casework on the number of possibilities based on which
cells in the corners are red.

First consider the case where one of two have an A cell as red.

A

C

C

B

The cell labeled with B is adjacent to two green cells already, so the last cell it’s adjacent to must be red. Then,
since this can be the only red in its 2× 2 square, we can fill in the next 4 squares.

A

C

C

B

18



Repeating this argument once more, we get the following:

A

C

C

B

However, then we can repeat this argument since we are in virtually the same situation we started with, alternating
between the two types of 2 × 2 blocks. Since there are an even number of 2 × 2 blocks in a row (namely 16 of
them), the 2× 2 in the adjacent corners must have the B cell colored as red. Thus, so far we’ve determined that if
two adjacent corners both have their A cell colored red, there are 0 ways to color the squares between them, and
if one has their A cell colored red and the other has their B cell colored red, there is 1 way to color the squares
between them. We are left to do the case where both have their B square colored red.

Without loss of generality, assume we’re working on the top row, i.e. the top two corners have their B as their
red cell. Work from the left to the right. Note that in each 2× 2 cell, starting from the left, if a cell on the left is
red, then the rest of the coloring is determined. (This is basically how we did previous cases.) Also note that if a
cell on the right is red, then the next 2× 2 has 2 cases for the red cell; one on the right (in which case we’re done
by what we just did) or one on the left, in which case we just repeat the argument. We need to flip from being
on the right to being on the left at some point, as we end in the top-right corner with a B cell colored red, which
is on the left of its 2 × 2 square. There are 15 places where we can flip, so there are 15 choices for the coloring.
They are all displayed below.
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With this, we can compute our answer.

If the corners have no red A cells, there are 154 = 50625 ways to color the squares.

If there is 1 red A cell, there are 4 ways to choose which corner has the red A cell, and 152 ways to color the
remaining cells, as the long edges containing the red A cell are fixed. Thus, there are 4 · 152 = 900 ways for this
case to happen.

Finally, if there are 2 red A cells, there are 2 ways to choose which corners have the red cells, as they must be
opposite each other. Each of these cases gives 1 way to color the rest of the donut, since each of these red A cells
are adjacent to two red B cells. Thus, this case gives 2 · 1 = 2.

Thus, the final answer is 50625 + 900 + 2 = 51527.
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