
Problems and Solutions Never Ending Math Open 2017

Team Round

1. 75

2. 7

3. �70

4. 4023
64

5. 3

6. 4 + 2 4
p
8

7.
2

7

8.
65

8

9. (4, 3), (�3,�4),

 
�13�

p
161

2
,
13�

p
161

2

!
,

 
�13 +

p
161

2
,
13 +

p
161

2

!

10. 1015

11.
2⇡

p
3

3

12. 941192

13. �1

14. 52017 � 95



Problems and Solutions Never Ending Math Open 2017

Team Round

1. A team of 6 distinguishable students competed at a math competition. They each scored an integer
amount of points, and the sum of their scores was 170. Their highest score was a 29, and their lowest
score was a 27. How many possible ordered 6-tuples of scores could they have scored?

Proposed by Je↵ery Li

Solution: First, note that the only possible ways that the students could’ve scored if they were
indistinguishable were 29,29,29,28,28,27 or 29,29,29,29,27,27. In particular, note that 29,29,28,28,28,28

is not valid since the lowest score is not a 27. For the first case, there are
6!

3!2!1!
= 60 ways, and for

the second case, there are
6!

4!2!
= 15 ways. Thus, there are a total of 75 ways for the students to have

scored in such a way.

2. Let ABC be a triangle with AB = 13, BC = 14, and CA = 15. Let P be a point inside triangle ABC,
and let ray AP meet segment BC at Q. Suppose the area of triangle ABP is three times the area of
triangle CPQ, and the area of triangle ACP is three times the area of triangle BPQ. Compute the
length of BQ.

A

B C

P

Q

Proposed by Brandon Wang

Solution: Let the angle between AQ and BC be ✓ < 90�. Then, note that [ABP ] =
AP ⇥BQ sin ✓

2
,

[ACP ] =
AP ⇥ CQ sin ✓

2
, [BPQ] =

PQ⇥BQ sin ✓

2
, and [CPQ] =

PQ⇥ CQ sin ✓

2
. Now, we have

[ABP ] = 3[CPQ], [ACP ] = 3[BPQ]

=) AP ⇥BQ = 3PQ⇥ CQ,AP ⇥ CQ = 3PQ⇥BQ

=) BQ

CQ
=

CQ

BQ
=

3PQ

AP

=) BQ2 = CQ2 =) BQ = CQ

=) BQ =
BC

2
= 7 .

3. I am thinking of a geometric sequence with 9600 terms, a1, a2,. . ., a9600. The sum of the terms with
indices divisible by three (i.e. a3 + a6 + · · · + a9600) is 1

56 times the sum of the other terms (i.e.
a1 + a2 + a4 + a5 + · · ·+ a9598 + a9599). Given that the terms with even indices sum to 10, what is the
smallest possible sum of the whole sequence?

Proposed by Vincent Bian
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Solution: If the common ratio is
1

r
, then the ratio of the terms whose indices is divisible by 3 to the

rest of the terms is
1

r + r2
, so r + r2 = 56, meaning r is either 7 or �8.

Note that if the even indices add to 10, then the odd indices must add to 10r, so the smallest possible
sum is 10� 8 ⇤ 10 = �70 .

4. Let ABCD be a regular tetrahedron with side length 6
p
2. There is a sphere centered at each of the

four vertices, with the radii of the four spheres forming a geometric series with common ratio 2 when
arranged in increasing order. If the volume inside the tetrahedron but outside the second largest sphere
is 71, what is the volume inside the tetrahedron but outside all four of the spheres?

Proposed by Sruthi Parthasarathi

Solution: Note that the volume of ABCD is
s3
p
2

12
= 72. Thus, the volume of the region inside both

the tetrahedron and the second largest sphere is 72 � 71 = 1. Since the radii of the sphere form a

geometric series with common ratio
1

2
, their volumes form a geometric series with common ratio

1

8
,

so the volume common to the tetrahedron and the four spheres are 8, 1,
1

8
, and

1

64
. Also, note that

none of the spheres have radii greater than 3
p
2, or else the overlapping region between that sphere

and the tetrahedron contains a tetrahedron of side length 3
p
2 and thus that volume is greater than 9,

contradiction. Thus, since none of the spheres have radius greater than 3
p
2, they don’t overlap with

each other, so the desired volume is 72� 8� 1� 1

8
� 1

64
=

4023

64
.

5. Find the largest number of consecutive positive integers, each of which has exactly 4 positive divisors.

Proposed by Carl Schildkraut

Solution: Since 33, 34, and 35 each have exactly 4 positive integer divisors, the answer is at least 3.
Now, assume for the sake of contradiction that the answer is at least 4. Then, there exists one positive
integer divisible by 4 in our list. However, any number 4n has the divisors 1,2,4,2n, and 4n, all of
which are distinct unless n = 1 or 2 (corresponding to 4 and 8). However, 4 only has 3 positive integer
divisors, and 8 is not part of a list of 4 consecutive integers that each have 4 positive integer divisors
(as 7 has only 2 and 9 has only 3), so the maximum number of these is 3 .

6. Let the (not necessarily distinct) roots of the equation x12 � 3x4 + 2 = 0 be a1, a2, . . . , a12. Compute

12X

i=1

|Re(ai)|.

Proposed by Je↵ery Li

Solution: Note that the LHS factors as (x�1)2(x+1)2(x2+1)2(x4+2). Thus, the roots are 1, 1, �1, �1,

i, i, �i, �i, and
± 4
p
2± i 4

p
2p

2
= ±

4
p
8

2
±i

4
p
8

2
. Thus, the sum is equal to 1+1+1+1+4⇥

4
p
8

2
= 4 + 2 4

p
8 .

7. Je↵rey is doing a three-step card trick with a row of seven cards labeled A through G. Before he starts
his trick, he picks a random permutation of the cards. During each step of his trick, he rearranges the
cards in the order of that permutation. For example, for the permutation (1, 3, 5, 2, 4, 7, 6), the first
card from the left remains in position, the second card is moved to the third position, the third card



Problems and Solutions Never Ending Math Open 2017

is moved to the fifth position, etc. After Je↵rey completes all three steps, what is the probability that
the “A” card will be in the same position as where it started?

Proposed by Eric K. Zhang

Solution: Treat the permutation as a 1-regular functional graph. Then the problem amounts to
finding the probability that ”A” is in a cycle of length 1 or 3. The probability it is in a cycle of length

one (a loop) is just
1

7
. In the case of a cycle of length three, simply multiply probabilities to get

✓
6

7

◆✓
5

6

◆✓
1

5

◆
=

1

7
, and add to get

2

7
.

8. In convex equilateral hexagon ABCDEF , AC = 13, CE = 14, and EA = 15. It is given that the area
of ABCDEF is twice the area of triangle ACE. Compute AB.

C

B

A

F

E

D

Proposed by Je↵ery Li

Solution: Let R be the circumradius of ACE. Reflect B over AC to B0, D over CE to D0, and F
over AE to F 0. Note that we want [AB0C] + [CD0E] + [EF 0A] = [ACE]. However, as AB increases,
so does [AB0C] + [CD0E] + [EF 0A], and when AB = R, we will have B0 = D0 = F 0 = O, where O
is the circumcenter of ACE, giving equality. Thus, we must have AB = R, and through standard

calculations (such as R =
abc

4[ABC]
), we get AB =

65

8
.

9. Find all ordered pairs (x, y) of numbers satisfying

(1 + x2)(1 + y2) = 170

(1 + x)(�1 + y) = 10.

Proposed by Eric Gan

Solution: Note that the system of equations can be rewritten as:

(y � x)2 + (1 + xy)2 = 170

(y � x) + (1 + xy) = 12.

Thus, we have
(y � x)2 + 2(y � x)(1 + xy) + (1 + xy)2 = 144

=) (y � x)2 � 2(y � x)(1 + xy) + (1 + xy)2 = 196

=) (y � x)� (1 + xy) = ±14

=) y � x = 13, xy = �2 or y � x = �1, xy = 12.
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Solving the first case gives (x, y) =

 
�13�

p
161

2
,
13�

p
161

2

!
,

 
�13 +

p
161

2
,
13 +

p
161

2

!
; solv-

ing the second case gives (x, y) = (4, 3), (�3,�4) . It’s easy to check all of these work.

10. Call a positive integer “pretty good” if it is divisible by the product of its digits. Call a positive integer
n “clever” if n, n + 1, and n + 2 are all pretty good. Find the number of clever positive integers less
than 102018. Note: the only number divisible by 0 is 0.

Proposed by Sam Ferguson

Solution: There are exactly 7 single-digit clever integers. It’s easy to see that no integer containing
a digit 0 is pretty good. Furthermore, any clever integer greater than 9 must have all digits preceding
the units digit be 1(s), as for any digit d 6= 1, at least one of n, n+1, n+2 is not divisible by d. Thus,
all clever integers greater than 9 are of the form

111 · · · 111| {z }
m 1s

d

for some integer 1  m  2017 and some digit d. Since neither 111 · · · 111| {z }
m 1s

4 nor 111 · · · 111| {z }
m 1s

8 are pretty

good for any integer m � 1, clever integers greater than 9 must be of form A: n = 111 · · · 111| {z }
m 1s

1 or form

B: n = 111 · · · 111| {z }
m 1s

5. It’s easy to see that an integer of form A is clever i↵ m = 3k for some positive

integer k, so there are

�
2017

3

⌫
= 672 clever integers of form A less than 102018.

For form B, clearly n itself is divisible by 5, and n + 1 is divisible by 6 i↵ m = 3k for some positive

integer k. To test whether n+2 is divisible by 7, we rewrite it as n+2 =
10m+1 � 1

9
+6. Then 7 | n+2

i↵
10m+1 � 1

9
⌘ 1 mod 7 () 10m+1 ⌘ 10 mod 7 () m ⌘ 0 mod 6

since 106 ⌘ 1 mod 7 but 10x 6⌘ 1 mod 7 for 1  x  5. Thus an integer of form B is clever i↵ m = 6k

for some positive integer k, so there are

�
2017

6

⌫
= 336 clever integers of form B less than 102018.

Thus, there are a total of 7 + 672 + 336 = 1015 clever integers less than 102018.

11. What is the area in the xy-plane bounded by x2 +
y2

3
 1 and

x2

3
+ y2  1?

A B

O

Proposed by Vincent Bian
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Solution: Note that the ellipses intersect at

 
±
p
3

2
,±

p
3

2

!
, so let point A be

 
�
p
3

2
,

p
3

2

!
, let B

be

 p
3

2
,

p
3

2

!
, and let O be the origin. Then, the desired area is made of 4 copies of the elliptical

sector AOB (where AOB is a sector of the ”horizontal” ellipse defined by
x2

3
+ y2 = 1)

Now, consider the a�ne transformation (x, y) 7! (
xp
3
, y), which sends the ellipse

x2

3
+ y2 = 1 to the

unit circle, so AOB gets mapped to a circular sector A0OB0. Since A0 is at

 
�1

2
,

p
3

2

!
and B0 is at

 
1

2
,

p
3

2

!
, we have that 4A0OB0 is equilateral. Thus, sector A0OB0 has one sixth of the area of a unit

circle, so it has area
⇡

6
.

Since sector A0OB0 is
1p
3
the area of sector AOB, sectorAOB has area

⇡
p
3

6
, and the entire intersection

of the ellipses has area
2⇡

p
3

3
.

12. Let S be the set of ordered triples (a, b, c) 2 {�1, 0, 1}3 \ {(0, 0, 0)}. Let n be the smallest positive
integer such that there exists a polynomial, with integer coe�cients, of the form

X

i+j+k=n
i,j,k�0

a(i,j,k)x
iyjzk

such that the absolute value of all the coe�cients are less than 2, and the polynomial equals 1 for all
(x, y, z) 2 S. Compute the number of such polynomials for that value of n.

Proposed by Je↵ery Li

Solution: We will first prove that n = 6. First, write the polynomial in terms of x, so that we get
something of the form

nX

i=0

Pi(y, z)x
i

where Pi(y, z) are polynomials in terms of y, z. Plugging in �1 and 1 for x gives us that

X

12j+1n

P2j+1(y, z) = 0

for all relevant ordered pairs (y, z), so we can WLOG assume that no terms of the polynomial have an
odd power of x for now. We do something similar for y and z, thus immediately getting that n is even.
Now, plugging in (1, 0, 0) and permutations give that the coe�cients of xn, yn, zn are all 1. Plugging
in (1, 1, 0) and permutations give that

n
2 �1X

j=1

a(2j,n�2j,0)x
2jyn�2j =

n
2 �1X

j=1

a(0,2j,n�2j)y
2jzn�2j =

n
2 �1X

j=1

a(2j,0,n�2j)x
2jzn�2j = �1,
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and plugging in (1, 1, 1) gives that
X

i+j+k=n
2

i,j,k>0

a(2i,2j,2k)x
2iy2jz2k = 1.

Thus, we must have at least one term of the form x2iy2jz2k (i, j, k > 0) that has a nonzero coe�cient,
so n � 2(1+1+1) = 6. At least one exists with n = 6; take x6+y6+z6�x4y2�y4z2�z4x2+x2y2z2.
Thus, we have that n = 6.

Now, we find the number of such polynomials. From earlier, we must have the coe�cients of x6, y6, z6

be 1. Now, consider the terms that only contain x and y, which are xiy6�i for 1  i  5. From
plugging in (1, 1, 0) and (1,�1, 0), we get that

5X

i=1

a(i,6�i,0) =
5X

i=1

(�1)ia(i,6�i,0) = 1

=) a(1,5,0) + a(3,3,0) + a(5,1,0) = 0, a(2,4,0) + a(4,2,0) = 1.

Since all the terms have absolute value less than 2, there are 7 possible ways to choose the first 3 terms
((0, 0, 0), (1,�1, 0) and permutations) and 2 possible ways to choose the last 2 terms ((1, 0) and (0, 1)).
Thus, there are 14 ways to choose the terms a(i,6�i,0). Similarly, there are 14 ways to choose the terms
a(0,i,6�i), and 14 ways to choose the terms a(i,0,6�i).

Now, consider the terms that contain x, y, and z. Denote Axy = a(1,1,4) + a(1,3,2) + a(3,1,2), Axz =
a(1,4,1)+a(1,2,3)+a(3,2,1), and Ayz = a(4,1,1)+a(2,1,3)+a(2,3,1). Plugging in (1, 1, 1), (�1, 1, 1), (1,�1, 1),
and (1, 1,�1), we get

a(2,2,2) +Axy +Axz +Ayz = a(2,2,2) �Axy �Axz +Ayz

= a(2,2,2) �Axy +Axz �Ayz = a(2,2,2) +Axy �Axz �Ayz = 1

=) a(2,2,2) = 1, Axy = Ayz = Axz = 0.

This gives us another 73 ways to choose the coe�cients (We can have (a(1,1,4), a(1,3,2), a(3,1,2)) equal
(0, 0, 0), (1, 0,�1) and permutations, and similar for the terms in Axz and Ayz).

Thus, the total number of such polynomials is 14⇥ 14⇥ 14⇥ 73 = 983 = 941192 .

13. Let N � 2017 be an odd positive integer. Two players, A and B, play a game on an N ⇥ N board,
taking turns placing numbers from the set {1, 2, . . . , N2} into cells, so that each number appears in
exactly one cell, and each cell contains exactly one number. Let the largest row sum be M , and the
smallest row sum be m. A goes first, and seeks to maximize M

m , while B goes second and wishes to
minimize M

m . There exists real numbers a and 0 < x < y such that for all odd N � 2017, if A and B
play optimally,

x ·Na  M

m
� 1  y ·Na.

Find a.

Proposed by Brandon Wang

Solution: Let N = 2k + 1. First, let A place down
N2 + 1

2
, and then let him do “strategy stealing;”

i.e. if there’s enough space, then if B places x then let A place N2 + 1� x in the same row. This will

guarantee that the row sums are between k(N2 + 1) + 1 and k(N2 + 1) +N2; thus, since k =
N � 1

2
,

this gives an upper bound of

(N � 1)(N2 + 1) + 2N2

(N � 1)(N2 + 1) + 2
= 1 +

2N2 � 2

N3 �N2 +N + 1
< 1 +

2

N � 1
< 1 +

c1
N
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for some constant c1 > 0 and all N � 2017. B can force one of the row sums to be greater than

k(N2 + 1) + N2 � k by placing
N + 1

2
of the largest numbers in the same row and making A place

N � 1

2
of the smallest numbers in the same row; since m  1 + 2 + · · ·+N2

N
=

N3 +N

2
we can get a

lower bound of
k(N2 + 1) +N2 � k

N3+N
2

=
N3 +N2

N3 +N
= 1 +

N � 1

N2 + 1
> 1 +

c2
N

for some c2 > 0, c2 < c1, and all N � 2017 Thus, a = �1 .

14. Yunseo has a supercomputer, equipped with a function F that takes in a polynomial P (x) with integer
coe�cients, computes the polynomial Q(x) = (P (x)�1)(P (x)�2)(P (x)�3)(P (x)�4)(P (x)�5), and
outputs Q(x). Thus, for example, if P (x) = x+ 3, then F (P (x)) = (x+ 2)(x+ 1)(x)(x� 1)(x� 2) =
x5 � 5x3 + 4x. Yunseo, being clumsy, plugs in P (x) = x and uses the function 2017 times, each time
using the output as the new input, thus, in e↵ect, calculating

F (F (F (. . . F (F (| {z }
2017

x)) . . . ))).

She gets a polynomial of degree 52017. Compute the number of coe�cients in the polynomial that are
divisible by 5.

Proposed by Je↵ery Li

Solution: We work in F5[x], or the ring/set of polynomials with coe�cients elements of F5, or integers
mod 5. Note that, letting P be shorthand for P (x),

F (P ) = (P � 1)(P � 2)(P � 3)(P � 4)(P � 5) = P (P � 1)(P � 2)(P � 3)(P � 4) = P 5 � P

upon expansion.

Now, define the mapping  : F5[x] ! F5[x] such that

 

 
nX

i=1

aix
i

!
=

nX

i=1

aix
5i .

It’s easy to see that  (1) = x and  is additive; that is,  (P +Q) =  (P )+ (Q) where P,Q 2 F5[x].
We also have that, if P (x) =

Pn
i=1 aix

i, then

 (P )5 =

 
nX

i=1

aix
5i

!5

=
nX

i=1

aix
5i+1

=  (xP )

by the Frobenius Endomorphism. Now, we introduce the following:

Lemma: Fn(x) =  ((x� 1)n).

Proof: We use proof by induction. The base case (n = 0) is trivial, as x =  (1) is true. Now, suppose
that Fn(x) =  ((x� 1)n) for all n  k. Then,

F k+1(x) = F ( 
�
(x� 1)k

�
)

=  
�
(x� 1)k

�5 � 
�
(x� 1)k

�

=  
�
x(x� 1)k

�
� 

�
(x� 1)k

�

=  
�
(x� 1)k+1

�
,
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completing the inductive step.

Thus, we have that F 2017(x) =  
�
(x� 1)2017

�
, so the only coe�cients that are nonzero (and thus not

divisible by 5) are the ones corresponding to terms of the form x5b where

✓
2017

b

◆
6⌘ 0 (mod 5). We

can count the number of such b by using Lucas’ Theorem, which gives us that, if b = b4b3b2b1b05 and
since 2017 = 310325, then

✓
2017

b

◆
⌘
✓
3

b4

◆✓
1

b3

◆✓
0

b2

◆✓
3

b1

◆✓
2

b0

◆
(mod 5);

thus, for

✓
2017

b

◆
6⌘ 0 (mod 5), we need 0  b4  3, 0  b3  1, b2 = 0, 0  b1  3, 0  b0  2, which

gives us 4 ⇥ 2 ⇥ 1 ⇥ 4 ⇥ 3 = 96 such b. Thus, since the rest of the coe�cients are zero, we see that

(52017 + 1)� 96 = 52017 � 95 coe�cients are divisible by 5.
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